高级检索
当前位置: 首页 > 详情页

An unsupervised style normalization method for cytopathology images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Britton Chance Ctr Biomed Photon, Wuhan, Hubei, Peoples R China [2]Women & Children Hosp Hubei Prov, Wuhan, Hubei, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Clin Lab, Wuhan, Hubei, Peoples R China
出处:
ISSN:

关键词: Cytopathology images Unsupervised image style normalization Generative adversarial learning Domain adversarial networks

摘要:
Diverse styles of cytopathology images have a negative effect on the generalization ability of automated image analysis algorithms. This article proposes an unsupervised method to normalize cytopathology image styles. We design a two-stage style normalization framework with a style removal module to convert the colorful cytopathology image into a gray-scale image with a color-encoding mask and a domain adversarial style reconstruction module to map them back to a colorful image with user-selected style. Our method enforces both hue and structure consistency before and after normalization by using the color-encoding mask and per-pixel regression. Intra-domain and inter-domain adversarial learning are applied to ensure the style of normalized images consistent with the user-selected for input images of different domains. Our method shows superior results against current unsupervised color normalization methods on six cervical cell datasets from different hospitals and scanners. We further demonstrate that our normalization method greatly improves the recognition accuracy of lesion cells on unseen cytopathology images, which is meaningful for model generalization. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 生物
小类 | 2 区 生化与分子生物学
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 生化与分子生物学
JCR分区:
出版当年[2019]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Britton Chance Ctr Biomed Photon, Wuhan, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)