高级检索
当前位置: 首页 > 详情页

PathSRGAN: Multi-Supervised Super-Resolution for Cytopathological Images Using Generative Adversarial Network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Engn Sci, MoE Key Lab Biomed Photon, Wuhan 430074, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Clin Lab, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: Generators Image reconstruction Gallium nitride Cervical cancer Microscopy cytopathological images generative adversarial learning super resolution

摘要:
In the cytopathology screening of cervical cancer, high-resolution digital cytopathological slides are critical for the interpretation of lesion cells. However, the acquisition of high-resolution digital slides requires high-end imaging equipment and long scanning time. In the study, we propose a GAN-based progressive multi-supervised super-resolution model called PathSRGAN (pathology super-resolution GAN) to learn the mapping of real low-resolution and high-resolution cytopathological images. With respect to the characteristics of cytopathological images, we design a new two-stage generator architecture with two supervision terms. The generator of the first stage corresponds to a densely-connected U-Net and achieves 4x to 10x super resolution. The generator of the second stage corresponds to a residual-in-residual DenseBlock and achieves 10x to 20x super resolution. The designed generator alleviates the difficulty in learning the mapping from 4x images to 20x images caused by the great numerical aperture difference and generates high quality high-resolution images. We conduct a series of comparison experiments and demonstrate the superiority of PathSRGAN to mainstream CNN-based and GAN-based super-resolution methods in cytopathological images. Simultaneously, the reconstructed high-resolution images by PathSRGAN improve the accuracy of computer-aided diagnosis tasks effectively. It is anticipated that the study will help increase the penetration rate of cytopathology screening in remote and impoverished areas that lack high-end imaging equipment.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 医学
小类 | 1 区 计算机:跨学科应用 2 区 工程:生物医学 2 区 工程:电子与电气 2 区 成像科学与照相技术 2 区 核医学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2018]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Engn Sci, MoE Key Lab Biomed Photon, Wuhan 430074, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Engn Sci, MoE Key Lab Biomed Photon, Wuhan 430074, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)