高级检索
当前位置: 首页 > 详情页

High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Britton Chance Ctr Biomed Photon, Wuhan 430074, Hubei, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Anesthesiol, Wuhan 430030, Hubei, Peoples R China [4]MIT, Comp Sci & Artificial Intelligence Laboititory, 77 Massachusetts Ave, Cambridge, MA 02139 USA [5]Shenzhen Huazhong Univ Sci & Technol, Res Inst, Shenzhen 518000, Peoples R China
出处:
ISSN:

摘要:
We combine a generative adversarial network (GAN) with light microscopy to achieve deep learning super-resolution under a large field of view (FOV). By appropriately adopting prior microscopy data in an adversarial training, the neural network can recover a high-resolution, accurate image of new specimen from its single low-resolution measurement. Its capacity has been broadly demonstrated via imaging various types of samples, such as USAF resolution target, human pathological slides, fluorescence-labelled fibroblast cells, and deep tissues in transgenic mouse brain, by both wide-field and light-sheet microscopes. The gigapixel, multi-color reconstruction of these samples verifies a successful GAN-based single image super-resolution procedure. We also propose an image degrading model to generate low resolution images for training, making our approach free from the complex image registration during training data set preparation. After a well-trained network has been created, this deep learning-based imaging approach is capable of recovering a large FOV (similar to 95 mm(2)) enhanced resolution of similar to 1.7 mu m at high speed (within 1 second), while not necessarily introducing any changes to the setup of existing microscopes. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 医学
小类 | 2 区 光学 2 区 核医学 3 区 生化研究方法
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 生化研究方法 3 区 光学 3 区 核医学
JCR分区:
出版当年[2017]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q1 OPTICS Q2 BIOCHEMICAL RESEARCH METHODS
最新[2023]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q2 OPTICS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Britton Chance Ctr Biomed Photon, Wuhan 430074, Hubei, Peoples R China [5]Shenzhen Huazhong Univ Sci & Technol, Res Inst, Shenzhen 518000, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:2 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)