高级检索
当前位置: 首页 > 详情页

LCPR-Net: low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Peoples R China [2]Chinese Acad Sci, Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China [3]Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Nucl Med & PET, Wuhan, Peoples R China [5]Sun Yat Sen Univ, Dept Nucl Med, Canc Ctr, Guangzhou, Peoples R China
出处:
ISSN:

关键词: Positron emission tomography (PET) image reconstruction deep learning adversarial learning

摘要:
Background: Reducing the radiation tracer dose and scanning time during positron emission tomography (PET) imaging can reduce the cost of the tracer, reduce motion artifacts, and increase the efficiency of the scanner. However, the reconstructed images to be noisy. It is very important to reconstruct high-quality images with low-count (LC) data. Therefore, we propose a deep learning method called LCPR-Net, which is used for directly reconstructing full-count (FC) PET images from corresponding LC sinogram data. Methods: Based on the framework of a generative adversarial network (GAN), we enforce a cyclic consistency constraint on the least-squares loss to establish a nonlinear end-to-end mapping process from LC sinograms to FC images. In this process, we merge a convolutional neural network (CNN) and a residual network for feature extraction and image reconstruction. In addition, the domain transform (DT) operation sends a priori information to the cycle-consistent GAN (CycleGAN) network, avoiding the need for a large amount of computational resources to learn this transformation. Results: The main advantages of this method are as follows. First, the network can use LC sinogram data as input to directly reconstruct an FC PET image. The reconstruction speed is faster than that provided by model-based iterative reconstruction. Second, reconstruction based on the CycleGAN framework improves the quality of the reconstructed image. Conclusions: Compared with other state-of-the-art methods, the quantitative and qualitative evaluation results show that the proposed method is accurate and effective for FC PET image reconstruction.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2019]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Peoples R China [2]Chinese Acad Sci, Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)