高级检索
当前位置: 首页 > 详情页

Automatic Lumbar Spinal CT Image Segmentation With a Dual Densely Connected U-Net

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Huazhong Univ Sci & Technol, Sch Software Engn, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Dept Orthoped,Wuhan 430030,Peoples R China [3]Huazhong Univ Sci & Technol, Union Hosp, Dept Pediat, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: Image segmentation Computed tomography Irrigation Training Biomedical imaging Surgery Magnetic resonance imaging computer aided diagnosis artificial neural networks image segmentation

摘要:
The clinical treatment of degenerative and developmental lumbar spinal stenosis (LSS) is different. Computed tomography (CT) is helpful in distinguishing degenerative and developmental LSS due to its advantage in imaging osseous and calcified tissues. However, boundaries of the vertebral body, spinal canal and dural sac have low contrast and are hard to identify in a CT image, so the diagnosis depends heavily on the knowledge of expert surgeons and radiologists. In this paper, we develop an automatic lumbar spinal CT image segmentation method to assist LSS diagnosis. The main contributions of this paper are as follows: 1) a new lumbar spinal CT image dataset is constructed that contains 2393 axial CT images collected from 279 patients, with the ground truth of pixel-level segmentation labels; 2) a dual densely connected U-shaped neural network (DDU-Net) is used to segment the spinal canal, dural sac and vertebral body in an end-to-end manner; 3) DDU-Net is capable of segmenting tissues with large scale-variant, inconspicuous edges (e.g., spinal canal) and extremely small size (e.g., dural sac); and 4) DDU-Net is practical, requiring no image preprocessing such as contrast enhancement, registration and denoising, and the running time reaches 12 FPS. In the experiment, we achieved state-of-the-art performance on the lumbar spinal image segmentation task. We expect that the technique will increase both radiology workflow efficiency and the perceived value of radiology reports for referring clinicians and patients.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:信息系统 2 区 工程:电子与电气 3 区 电信学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 电信学
JCR分区:
出版当年[2018]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 TELECOMMUNICATIONS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Software Engn, Wuhan 430074, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:1 总访问量:411 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)