高级检索
当前位置: 首页 > 详情页

Automatic segmentation of ovarian follicles using deep neural network combined with edge information

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ ESCI

单位: [1]Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Natl Key Lab Sci & Technol Multispectral Informat, Key Lab Image Informat Proc & Intelligence Control, Wuhan, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Reprod Med Ctr, Wuhan, Peoples R China [3]Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
出处:

关键词: ovarian follicle segmentation medical image segmentation deep neural network deep learning computer-aided diagnosis

摘要:
Medical ultrasound imaging plays an important role in computer-aided diagnosis systems. In many cases, it is the preferred method of doctors for diagnosing diseases. Combined with computer vision technology, segmentation of ovarian ultrasound images can help doctors accurately judge diseases, reduce doctors' workload, and improve doctors' work efficiency. However, accurate segmentation of an ovarian ultrasound image is a challenging task. On the one hand, there is a lot of speckle noise in ultrasound images; on the other hand, the edges of objects are blurred in ultrasound images. In order to segment the target accurately, we propose an ovarian follicles segmentation network combined with edge information. By adding an edge detection branch at the end of the network and taking the edge detection results as one of the losses of the network, we can accurately segment the ovarian follicles in an ultrasound image, making the segmentation results finer on the edge. Experiments show that the proposed network improves the segmentation accuracy of ovarian follicles, and that it has advantages over current algorithms.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 公共卫生、环境卫生与职业卫生 4 区 生殖生物学
JCR分区:
出版当年[2020]版:
最新[2023]版:
Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Q3 REPRODUCTIVE BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Natl Key Lab Sci & Technol Multispectral Informat, Key Lab Image Informat Proc & Intelligence Control, Wuhan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)