高级检索
当前位置: 首页 > 详情页

Long Short-Term Memory Based Framework for Longitudinal Assessment of COVID-19 Using CT Imaging and Laboratory Data

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan 430030, Peoples R China [2]Shanghai United Imaging Intelligence Healthcare C, Shanghai, Peoples R China
出处:
ISSN:

关键词: Computed tomography Imaging COVID-19 Lung Diseases Image segmentation Feature extraction Artificial intelligence computed tomography image analysis

摘要:
Automatic longitudinal assessment of the disease progression of coronavirus disease 2019 (COVID-19) is invaluable to ensure timely treatment for severe or critical patients. An artificial intelligence system that combines chest computed tomography (CT) and laboratory examinations may provide a more accurate diagnosis. To explore an artificial intelligence solution to longitudinally assess the condition of COVID-19 using CT imaging and laboratory findings, from January 27, 2020, to April 3, 2020, multiple follow-up examinations of COVID-19 inpatients were retrospectively collected. CT imaging features were automatically extracted using a deep learning method and combined with laboratory tests. The progression sequences were generated with two follow-ups, each of which contained 60 imaging and 24 laboratory features. Pearson's correlation was conducted to rank the importance of each univariate feature, and multivariate logistic regression was adopted for feature selection. The selected features were used to train a 2-layer long short-term memory network (LSTM) with pulse oxygen saturation (SpO(2)) as an indicator of disease progression in three classes: alleviated, stable, and aggravated. The performance of models trained on various feature subsets was compared with five-fold cross validation.559 patients with 1734 examinations were collected, and 1450 progression sequences were generated. Of the 559 patients, 262 (46.9%) were male. The mean age of the patients was 60 +/- 14 years. The mean hospitalization duration was 31 +/- 12 days. Based on the ranking of importance, 26 features from the imaging and laboratory tests were selected, achieving the best accuracy of 0.85 for progression assessment. The comparisons demonstrated that CT features outperformed laboratory features. The best sensitivities for alleviated and aggravated obtained with CT features alone were 0.83 and 0.85, respectively, while laboratory features improved the assessment precision by about 3%. Longitudinal assessment using deep learning with combined features from CT imaging and laboratory tests better predicts the progression of COVID-19 than either of them.

语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 计算机科学
小类 | 3 区 工程:电子与电气 3 区 电信学 4 区 计算机:信息系统
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 电信学
JCR分区:
出版当年[2020]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS
最新[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan 430030, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)