高级检索
当前位置: 首页 > 详情页

Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification With Chest CT

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Nanjing Univ Aeronaut & Astronaut, MIIT Key Lab Pattern Anal & Machine Intelligence, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China [2]Jilin Univ, China Japan Union Hosp, Dept Radiol, Changchun 130021, Peoples R China [3]Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Dept Radiol, Shanghai 200240, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Radiol, Wuhan 430074, Peoples R China [5]Fudan Univ, Shanghai Publ Hlth Clin Ctr, Dept Radiol, Shanghai 200433, Peoples R China [6]Zhejiang Univ, Sch Med, Hangzhou Peoples Hosp 1, Dept Radiol, Hangzhou 310027, Peoples R China [7]Sichuan Univ, West China Hosp, Dept Radiol, Chengdu 610041, Peoples R China [8]Jishou Univ, Sch Med, Qianjiang Cent Hosp, Dept Radiol, Chongqing 409000, Peoples R China [9]Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai 201399, Peoples R China [10]Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
出处:
ISSN:

关键词: Feature extraction Computed tomography Lung Forestry Hospitals Radiology Diseases COVID-19 classification deep forest feature selection chest CT

摘要:
Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE), AUC, precision and F1-score achieved by our method are 91.79%, 93.05%, 89.95%, 96.35%, 93.10% and 93.07%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:信息系统 2 区 计算机:跨学科应用 2 区 数学与计算生物学 2 区 医学:信息
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
JCR分区:
出版当年[2018]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Nanjing Univ Aeronaut & Astronaut, MIIT Key Lab Pattern Anal & Machine Intelligence, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
通讯作者:
通讯机构: [9]Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai 201399, Peoples R China [10]Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)