高级检索
当前位置: 首页 > 详情页

Prostate lesion segmentation based on a 3D end-to-end convolution neural network with deep multi-scale attention

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China [2]Kennesaw State Univ, Coll Comp & Software Engn, Atlanta, GA USA [3]Tongji Univ, Tongji Hosp, Sch Medcine, Dept Radiol, Shanghai 200065, Peoples R China
出处:
ISSN:

关键词: Mp-MRI Prostate cancer segmentation Convolution neural network Attention

摘要:
Prostate cancer is one of the deadest cancers among human beings. To better diagnose the prostate cancer, prostate lesion segmentation becomes a very important work, but its progress is very slow due to the prostate lesions small in size, irregular in shape, and blurred in contour. Therefore, automatic prostate lesion segmentation from mp-MRI is a great significant work and a challenging task. However, the most existing multi-step segmentation methods based on voxel-level classification are time-consuming, may introduce errors in different steps and lead to error accumulation. To decrease the computation time, harness richer 3D spatial features, and fuse the multi-level contextual information of mp-MRI, we present an automatic segmentation method in which all steps are optimized conjointly as one step to form our end-to-end convolutional neural network. The proposed end-to-end network DMSA-V-Net consists of two parts: (1) a 3D V-Net is used as the backbone network, it is the first attempt in employing 3D convolutional neural network for CS prostate lesion segmentation, (2) a deep multi-scale attention mechanism is introduced into the 3D V-Net which can highly focus on the ROI while suppressing the redundant background. As a merit, the attention can adaptively re-align the context information between the feature maps at different scales and the saliency maps in high-levels. We performed experiments based on five cross-fold validation with data including 97 patients. The results show that the Dice and sensitivity are 0.7014 and 0.8652 respectively, which demonstrates that our segmentation approach is more significant and accurate compared to other methods.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 核医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 核医学
JCR分区:
出版当年[2021]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)