高级检索
当前位置: 首页 > 详情页

Dual-Sampling Attention Network for Diagnosis of COVID-19 From Community Acquired Pneumonia

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

单位: [1]Shanghai Jiao Tong Univ, Sch Biomed Engn, Inst Med Imaging Technol, Shanghai 200030, Peoples R China [2]Shanghai United Imaging Intelligence Co Ltd, Shanghai 201807, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Radiol, Tongji Med Coll, Wuhan 430074, Peoples R China [4]Fudan Univ, Shanghai Publ Hlth Clin Ctr, Dept Radiol, Shanghai 200433, Peoples R China [5]Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha 410083, Peoples R China [6]Qual Control Ctr, Dept Radiol, Changsha 410011, Peoples R China [7]Jilin Univ, Hosp 3, Dept Radiol, Changchun 130012, Peoples R China [8]Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Dept Radiol, Shanghai 201101, Peoples R China [9]Zhejiang Univ, Hangzhou First Peoples Hosp, Dept Radiol, Sch Med, Hangzhou 310027, Peoples R China [10]Capital Med Univ, Beijing Chaoyang Hosp, Beijing 100069, Peoples R China [11]Sichuan Univ, West China Hosp, Dept Radiol, Chengdu 610017, Peoples R China [12]Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai 201807, Peoples R China [13]Shanghai Jiao Tong Univ, Inst Med Imaging Technol, Sch Biomed Engn, Shanghai 200030, Peoples R China
出处:
ISSN:

关键词: Lung Computed tomography Diseases Hospitals Radiology Image segmentation COVID-19 COVID-19 Diagnosis Online Attention Explainability Imbalanced Distribution Dual Sampling Strategy

摘要:
The coronavirus disease (COVID-19) is rapidly spreading all over the world, and has infected more than 1,436,000 people in more than 200 countries and territories as of April 9, 2020. Detecting COVID-19 at early stage is essential to deliver proper healthcare to the patients and also to protect the uninfected population. To this end, we develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT). In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses. Note that there exists imbalanced distribution of the sizes of the infection regions between COVID-19 and CAP, partially due to fast progress of COVID-19 after symptom onset. Therefore, we develop a dual-sampling strategy to mitigate the imbalanced learning. Our method is evaluated (to our best knowledge) upon the largest multi-center CT data for COVID-19 from 8 hospitals. In the training-validation stage, we collect 2186 CT scans from 1588 patients for a 5-fold cross-validation. In the testing stage, we employ another independent large-scale testing dataset including 2796 CT scans from 2057 patients. Results show that our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%. With this performance, the proposed algorithm could potentially aid radiologists with COVID-19 diagnosis from CAP, especially in the early stage of the COVID-19 outbreak.

基金:
语种:
高被引:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 医学
小类 | 1 区 计算机:跨学科应用 2 区 工程:生物医学 2 区 工程:电子与电气 2 区 成像科学与照相技术 2 区 核医学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2018]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Shanghai Jiao Tong Univ, Sch Biomed Engn, Inst Med Imaging Technol, Shanghai 200030, Peoples R China [2]Shanghai United Imaging Intelligence Co Ltd, Shanghai 201807, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:2 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)