高级检索
当前位置: 首页 > 详情页

Semi-Supervised Learning for Automatic Atrial Fibrillation Detection in 24-Hour Holter Monitoring

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, MoE Key Lab Biomed Photon, Collaborat Innovat Ctr Biomed Engn, Sch Engn Sci, Wuhan 430074, Hubei, Peoples R China [3]Huazhong Univ Sci & Technol, Div Cardiol, Dept Internal Med, Tongji Hosp,Tongji Med Coll, Wuhan 430074, Hubei, Peoples R China
出处:
ISSN:

关键词: Training Electrocardiography Monitoring Feature extraction Semisupervised learning Recording Deep learning Atrial fibrillation detection semi-supervised learning deep learning electrocardiogram

摘要:
Paroxysmal atrial fibrillation (AF) is generally diagnosed by long-term dynamic electrocardiogram (ECG) monitoring. Identifying AF episodes from long-term ECG data can place a heavy burden on clinicians. Many machine-learning-based automatic AF detection methods have been proposed to solve this issue. However, these methods require numerous annotated data to train the model, and the annotation of AF in long-term ECG is extremely time-consuming. Reducing the demand for labeled data can effectively improve the clinical practicability of automatic AF detection methods. In this study, we developed a novel semi-supervised learning method that generated modified low-entropy labels of unlabeled samples for training a deep learning model to automatically detect paroxysmal AF in 24 h Holter monitoring data. Our method employed a 1D CNN-LSTM neural network with RR intervals as input and used few labeled training data with numerous unlabeled data for training the neural network. This method was evaluated using a 24 h Holter monitoring dataset collected from 1000 paroxysmal AF patients. Using labeled samples from only 10 patients for model training, our method achieved a sensitivity of 97.8%, specificity of 97.9%, and accuracy of 97.9% in five-fold cross-validation. Compared to the supervised learning method with complete labeled samples, the detection accuracy of our method was only 0.5% lower, while the workload of data annotation was significantly reduced by more than 98%. In general, this is the first study to apply semi-supervised learning techniques for automatic AF detection using ECG. Our method can effectively reduce the demand for AF data annotations and can improve the clinical practicability of automatic AF detection.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:信息系统 2 区 计算机:跨学科应用
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, MoE Key Lab Biomed Photon, Collaborat Innovat Ctr Biomed Engn, Sch Engn Sci, Wuhan 430074, Hubei, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, MoE Key Lab Biomed Photon, Collaborat Innovat Ctr Biomed Engn, Sch Engn Sci, Wuhan 430074, Hubei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)