高级检索
当前位置: 首页 > 详情页

Eliminating CT radiation for clinical PET examination using deep learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, Shenzhen 518055, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Nucl Med & PET, Wuhan 430000, Peoples R China [3]Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, 1068 Xueyuan Ave, Shenzhen 518055, Guangdong, Peoples R China
出处:
ISSN:

关键词: Positron emission tomography Computed tomography Attenuation correction Deep learning Clinical examination

摘要:
Clinical PET/CT examinations rely on CT modality for anatomical localization and attenuation correction of the PET data. However, the use of CT significantly increases the risk of ionizing radiation exposure for patients. We propose a deep learning framework to learn the relationship mapping between attenuation corrected (AC) PET and non-attenuation corrected (NAC) PET images to estimate PET attenuation maps and generate pseudo-CT images for medical observation. In this study, 5760, 1608 and 1351 pairs of transverse PET-CT slices were used as the training, validation, and testing sets, respectively, to implement the proposed framework. A pix2pix model was adopted to predict AC PET images from NAC PET images, which allowed the calculation of PET attenuation maps (mu-maps). The same model was then applied to generate realistic CT images from the calculated mu-maps. The quality of predicted AC PET and CT was assessed using normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and Pearson correlation coefficient (PCC). Relative to true AC PET, the synthetic AC PET achieved superior quantitative performances with 2.20 +/- 1.17% NRMSE, 34.03 +/- 4.73 dB PSNR, 97.90 +/- 1.22% SSIM and 98.45 +/- 1.31% PCC. The synthetic CT and synthetic AC PET images were deemed acceptable by radiologists who rated the images, as they provided sufficient anatomical and functional information, respectively. This work demonstrates that the proposed deep learning framework is a promising method in clinical applications, such as radiotherapy and low-dose imaging.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2020]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, Shenzhen 518055, Peoples R China
通讯作者:
通讯机构: [1]Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, Shenzhen 518055, Peoples R China [3]Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, 1068 Xueyuan Ave, Shenzhen 518055, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)