高级检索
当前位置: 首页 > 详情页

Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Med Coll,Tongji Hosp,Dept Gynecol & Obstet,Wuhan,Hubei,Peoples R China [2]Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai, Peoples R China
出处:
ISSN:

摘要:
Approaches to reliably predict the developmental potential of embryos and select suitable embryos for blastocyst culture are needed. The development of time-lapse monitoring (TLM) and artificial intelligence (AI) may help solve this problem. Here, we report deep learning models that can accurately predict blastocyst formation and usable blastocysts using TLM videos of the embryo's first three days. The DenseNet201 network, focal loss, long short-term memory (LSTM) network and gradient boosting classifier were mainly employed, and video preparation algorithms, spatial stream and temporal stream models were developed into ensemble prediction models called STEM and STEM+. STEM exhibited 78.2% accuracy and 0.82 AUC in predicting blastocyst formation, and STEM+ achieved 71.9% accuracy and 0.79 AUC in predicting usable blastocysts. We believe the models are beneficial for blastocyst formation prediction and embryo selection in clinical practice, and our modeling methods will provide valuable information for analyzing medical videos with continuous appearance variation. Liao et al. propose a deep learning model to predict blastocyst formation using TLM videos following the first three days of embryogenesis. The authors develop an ensemble prediction model, STEM and STEM+, which were found to exhibit 78.2% and 71.9% accuracy at predicting blastocyst formation and useable blastocysts respectively.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 生物
小类 | 2 区 生物学
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生物学
JCR分区:
出版当年[2019]版:
Q1 BIOLOGY
最新[2023]版:
Q1 BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Med Coll,Tongji Hosp,Dept Gynecol & Obstet,Wuhan,Hubei,Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)