高级检索
当前位置: 首页 > 详情页

An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Reprod Med Ctr, Tongji Hosp, Tongji Med Coll, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: AI Ploidy status time-lapse PGT Prediction

摘要:
Background For the association between time-lapse technology (TLT) and embryo ploidy status, there has not yet been fully understood. TLT has the characteristics of large amount of data and non-invasiveness. If we want to accurately predict embryo ploidy status from TLT, artificial intelligence (AI) technology is a good choice. However, the current work of AI in this field needs to be strengthened. Methods A total of 469 preimplantation genetic testing (PGT) cycles and 1803 blastocysts from April 2018 to November 2019 were included in the study. All embryo images are captured during 5 or 6 days after fertilization before biopsy by time-lapse microscope system. All euploid embryos or aneuploid embryos are used as data sets. The data set is divided into training set, validation set and test set. The training set is mainly used for model training, the validation set is mainly used to adjust the hyperparameters of the model and the preliminary evaluation of the model, and the test set is used to evaluate the generalization ability of the model. For better verification, we used data other than the training data for external verification. A total of 155 PGT cycles from December 2019 to December 2020 and 523 blastocysts were included in the verification process. Results The euploid prediction algorithm (EPA) was able to predict euploid on the testing dataset with an area under curve (AUC) of 0.80. Conclusions The TLT incubator has gradually become the choice of reproductive centers. Our AI model named EPA that can predict embryo ploidy well based on TLT data. We hope that this system can serve all in vitro fertilization and embryo transfer (IVF-ET) patients in the future, allowing embryologists to have more non-invasive aids when selecting the best embryo to transfer.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 生殖生物学 4 区 内分泌学与代谢
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 生殖生物学 2 区 内分泌学与代谢
JCR分区:
出版当年[2019]版:
Q2 REPRODUCTIVE BIOLOGY Q3 ENDOCRINOLOGY & METABOLISM
最新[2023]版:
Q1 ENDOCRINOLOGY & METABOLISM Q1 REPRODUCTIVE BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Reprod Med Ctr, Tongji Hosp, Tongji Med Coll, Wuhan 430030, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:590 今日访问量:0 总访问量:442 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)