单位:[1]Reproductive Medicine Center,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China妇产科学系计划生育专科华中科技大学同济医学院附属同济医院[2]Department of Obstetrics and Gynecology,National Clinical Research Center for Obstetrics and Gynecology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China华中科技大学同济医学院附属同济医院妇产科教研室妇产科学系[3]Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education),Hubei Key Laboratory of Tumor Invasion and Metastasis,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China华中科技大学同济医学院附属同济医院
第一作者单位:[1]Reproductive Medicine Center,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
Ma Bing-Xin,Zhao Guang-Nian,Yi Zhi-Fei,et al.Enhancing clinical utility: deep learning-based embryo scoring model for non-invasive aneuploidy prediction[J].Reproductive Biology And Endocrinology : RB&E.2024,22(1):58.doi:10.1186/s12958-024-01230-w.
APA:
Ma Bing-Xin,Zhao Guang-Nian,Yi Zhi-Fei,Yang Yong-Le,Jin Lei&Huang Bo.(2024).Enhancing clinical utility: deep learning-based embryo scoring model for non-invasive aneuploidy prediction.Reproductive Biology And Endocrinology : RB&E,22,(1)
MLA:
Ma Bing-Xin,et al."Enhancing clinical utility: deep learning-based embryo scoring model for non-invasive aneuploidy prediction".Reproductive Biology And Endocrinology : RB&E 22..1(2024):58