高级检索
当前位置: 首页 > 详情页

GraphSynergy: a network-inspired deep learning model for anticancer drug combination prediction

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ SSCI

单位: [1]City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China [2]Univ Hong Kong, Hong Kong Jockey Club Ctr Suicide Res & Prevent, Hong Kong, Peoples R China [3]Chinese Univ Hong Kong, Dept Anaesthesia & Intens Care, Hong Kong, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Thorac Oncol, Wuhan, Peoples R China
出处:
ISSN:

关键词: anticancer drug combination deep learning graph convolutional network network

摘要:
Objective: To develop an end-to-end deep learning framework based on a protein-protein interaction (PPI) network to make synergistic anticancer drug combination predictions. Materials and Methods: We propose a deep learning framework named Graph Convolutional Network for Drug Synergy (GraphSynergy). GraphSynergy adapts a spatial-based Graph Convolutional Network component to encode the high-order topological relationships in the PPI network of protein modules targeted by a pair of drugs, as well as the protein modules associated with a specific cancer cell line. The pharmacological effects of drug combinations are explicitly evaluated by their therapy and toxicity scores. An attention component is also introduced in GraphSynergy, which aims to capture the pivotal proteins that play a part in both PPI network and biomolecular interactions between drug combinations and cancer cell lines. Results: GraphSynergy outperforms the classic and state-of-the-art models in predicting synergistic drug combinations on the 2 latest drug combination datasets. Specifically, GraphSynergy achieves accuracy values of 0.7553 (11.94% improvement compared to DeepSynergy, the latest published drug combination prediction algorithm) and 0.7557 (10.95% improvement compared to DeepSynergy) on DrugCombDB and Oncology-Screen datasets, respectively. Furthermore, the proteins allocated with high contribution weights during the training of GraphSynergy are proved to play a role in view of molecular functions and biological processes, such as transcription and transcription regulation. Conclusion: The introduction of topological relations between drug combination and cell line within the PPI network can significantly improve the capability of synergistic drug combination identification.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 管理科学
小类 | 2 区 计算机:信息系统 2 区 计算机:跨学科应用 2 区 卫生保健与服务 2 区 医学:信息
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 计算机:信息系统 2 区 计算机:跨学科应用 2 区 卫生保健与服务 2 区 图书情报与档案管理 2 区 医学:信息
JCR分区:
出版当年[2019]版:
Q1 MEDICAL INFORMATICS Q1 HEALTH CARE SCIENCES & SERVICES Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 HEALTH CARE SCIENCES & SERVICES Q1 INFORMATION SCIENCE & LIBRARY SCIENCE Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
通讯作者:
通讯机构: [1]City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China [*1]City Univ Hong Kong, Sch Data Sci, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)