高级检索
当前位置: 首页 > 详情页

Deep learning identifies explainable reasoning paths of mechanism of action for drug repurposing from multilayer biological network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]City Univ Hong Kong, Hong Kong, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Wuhan, Hubei, Peoples R China [3]Chinese Univ Hong Kong, Hong Kong, Peoples R China [4]Univ Southern Calif, Los Angeles, CA 90089 USA
出处:
ISSN:

关键词: mechanism of drug action interpretable deep learning drug repurposing

摘要:
The discovery and repurposing of drugs require a deep understanding of the mechanism of drug action (MODA). Existing computational methods mainly model MODA with the protein-protein interaction (PPI) network. However, the molecular interactions of drugs in the human body are far beyond PPIs. Additionally, the lack of interpretability of these models hinders their practicability. We propose an interpretable deep learning-based path-reasoning framework (iDPath) for drug discovery and repurposing by capturing MODA on by far the most comprehensive multilayer biological network consisting of the complex high-dimensional molecular interactions between genes, proteins and chemicals. Experiments show that iDPath outperforms state-of-the-art machine learning methods on a general drug repurposing task. Further investigations demonstrate that iDPath can identify explicit critical paths that are consistent with clinical evidence. To demonstrate the practical value of iDPath, we apply it to the identification of potential drugs for treating prostate cancer and hypertension. Results show that iDPath can discover new FDA-approved drugs. This research provides a novel interpretable artificial intelligence perspective on drug discovery.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版
大类 | 2 区 生物学
小类 | 2 区 生化研究方法 2 区 数学与计算生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 1 区 数学与计算生物学 2 区 生化研究方法
JCR分区:
出版当年[2020]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]City Univ Hong Kong, Hong Kong, Peoples R China
通讯作者:
通讯机构: [1]City Univ Hong Kong, Hong Kong, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Wuhan, Hubei, Peoples R China [*1]City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China [*2]Huazhong Univ Sci & Technol, Dept Thorac Oncol, Tongji Hosp, Wuhan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)