高级检索
当前位置: 首页 > 详情页

Deep Learning Identifies Intelligible Predictors of Poor Prognosis in Chronic Kidney Disease

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China [2]Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, and the Musketeers Foundation Institute of Data Science, University of Hong Kong, Hong Kong SAR, China [3]School of Data Science, City University of Hong Kong, Hong Kong SAR, China [4]Department of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
出处:
ISSN:

关键词: Interpretable deep learning model machine learning chronic kidney disease

摘要:
Early diagnosis and prediction of chronic kidney disease (CKD) progress within a given duration are critical to ensure personalized treatment, which could improve patients' quality of life and prolong survival time. In this study, we explore the intelligibility of machine-learning and deep-learning models on end-stage renal disease (ESRD) prediction, based on readily-accessible clinical and laboratory features of patients suffering from CKD. Eight machine learning models were used to predict whether a patient suffering from CKD would progress to ESRD within three years based on demographics, clinical,and comorbidity information. LASSO, random forest, and XGBoost were used to identify the most significant markers. In addition, we introduced four advanced attribution methods to the deep learning model to enhance model intelligibility. The deep learning model achieved an AUC-ROC of 0.8991, which was significantly higher than that of baseline models. The interpretation generated by deep learning with attribution methods, random forest, and XGBoost was consistent with clinical knowledge, whereas LASSO-based interpretation was inconsistent. Hematuria, proteinuria, potassium, urine albumin to creatinine ratio were positively associated with the progression of CKD, while eGFR and urine creatinine were negatively associated. In conclusion, deep learning with attribution algorithms could identify intelligible features of CKD progression. Our model identified a number of critical, but under-reported features, which may be novel markers for CKD progression. This study provides physicians with solid data-driven evidence for using machine learning for CKD clinical management and treatment.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 计算机:跨学科应用 1 区 医学:信息 1 区 计算机:信息系统 1 区 数学与计算生物学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)