高级检索
当前位置: 首页 > 详情页

Resveratrol Attenuates Oxalate-Induced Renal Oxidative Injury and Calcium Oxalate Crystal Deposition by Regulating TFEB-Induced Autophagy Pathway

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan,Peoples R China [2]Huazhong Univ Sci & Technol, Tonsil Hosp, Tong Med Coll, Inst Urol, Wuhan, Peoples R China
出处:
ISSN:

关键词: nephrolithiasis oxalate resveratrol autophagy transcription factor EB

摘要:
The oxidative injury of renal tubular epithelial cells caused by inflammation and oxidative stress induced by hyperoxaluria is an important factor in the kidney calcium oxalate (CaOx) stone formation. Resveratrol (RSV) has been reported to reduce oxidative injury to renal tubular epithelial cells, and autophagy is critical for the protective effect of resveratrol. However, the protective mechanism of RSV in oxalate-induced oxidative injury of renal tubular cells and the role of autophagy in this process are still unclear. In our study, glyoxylic acid monohydrate-induced rats were treated with or without resveratrol, and it was detected that the overexpression of oxidant species, CaOx crystal deposition, apoptosis level, inflammatory cytokines and osteoblastic-associated protein expression were reversed by resveratrol. Additionally, Resveratrol pretreatment significantly reversed oxalate -induced decline in cell viability, cell damage, oxidant species overexpression, and osteogenic transformation in normal rat kidney epithelial-like (NRK-52E) cells. Furthermore, we found that RSV pretreatment promoted intracellular LC3II upregulation, p62 downregulation, and autophagosome formation, whereas 3-methyladenine treatment reduced this effect. Moreover, RSV induced the expression of transcription factor EB (TFEB) in the nucleus of NRK-52E cells in a concentration-dependent manner. After transfection of NRK-52E cells with TFEB siRNA, we showed that the RSV-induced increase in TFEB expression and autophagosome formation were inhibited. Simultaneously, RSV-induced NRK-52E cells protection was partially reversed. These results suggested that RSV regulates oxalate-induced renal inflammation, oxidative injury, and CaOx crystal deposition in vitro and in vivo through the activation of a TFEB-induced autophagy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版
大类 | 2 区 生物
小类 | 2 区 发育生物学 3 区 细胞生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 发育生物学 3 区 细胞生物学
JCR分区:
出版当年[2019]版:
Q1 DEVELOPMENTAL BIOLOGY Q2 CELL BIOLOGY
最新[2023]版:
Q1 DEVELOPMENTAL BIOLOGY Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan,Peoples R China [2]Huazhong Univ Sci & Technol, Tonsil Hosp, Tong Med Coll, Inst Urol, Wuhan, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Urol,Wuhan,Peoples R China [2]Huazhong Univ Sci & Technol, Tonsil Hosp, Tong Med Coll, Inst Urol, Wuhan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)