高级检索
当前位置: 首页 > 详情页

Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Southern Med Univ, Nanfang Hosp, Dept Orthoped, Guangzhou 510515, Peoples R China [2]Harvard Med Sch, Brigham & Womens Hosp, Div Engn Med, Dept Med, Cambridge, MA 02139 USA [3]South China Univ Technol, South China Adv Inst Soft Matter Sci & Technol, Guangzhou 510640, Peoples R China [4]Huazhong Univ Sci & Technol,Dept Orthoped Surg,Tongji Hosp,Tongji Med Coll,Wuhan 43000,Peoples R China
出处:
ISSN:

关键词: Sprayable hydrogel dressing Antibacterial ROS-scavenging Wound healing and remodeling

摘要:
Wound management poses a considerable economic burden on the global healthcare system, considering the impacts of wound infection, delayed healing and scar formation. To this end, multifunctional dressings based on hydrogels have been developed to stimulate skin healing. Herein, we describe the design, fabrication, and characterization of a sprayable hydrogel-based wound dressing loaded with cerium oxide nanoparticles (CeONs) and an antimicrobial peptide (AMP), for combined reactive oxygen species (ROS)-scavenging and antibacterial properties. We adopted a mussel-inspired strategy to chemically conjugate gelatin with dopamine motifs and prepared a hydrogel dressing with improved binding affinity to wet skin surfaces. Additionally, the release of AMP from the hydrogel demonstrated rapid release ablation and contact ablation against four representative bacterial strains, confirming the desired antimicrobial activities. Moreover, the CeONs-loaded hydrogel dressing exhibited favorable ROS-scavenging abilities. The biocompatibility of the multifunctional hydrogel dressing was further proven in vitro by culturing with HaCaT cells. Overall, the benefits of the developed hydrogel wound dressing, including sprayability, adhesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability, highlight its promissing translational potentials in wound management. Wound management poses a considerable economic burden on the global healthcare system, considering the impacts of wound infection, delayed healing and scar formation. To this end, multifunctional dressings based on hydrogels have been developed to stimulate skin healing. Herein, we describe the design, fabrication, and characterization of a sprayable hydrogel-based wound dressing loaded with cerium oxide nanoparticles (CeONs) and an antimicrobial peptide (AMP), for combined reactive oxygen species (ROS)-scavenging and antibacterial properties. We adopted a mussel-inspired strategy to chemically conjugate gelatin with dopamine motifs and prepared a hydrogel dressing with improved binding affinity to wet skin surfaces. Additionally, the release of AMP from the hydrogel demonstrated rapid release ablation and contact ablation against four representative bacterial strains, confirming the desired antimicrobial activities. Moreover, the CeONs-loaded hydrogel dressing exhibited favorable ROS-scavenging abilities. The biocompatibility of the multifunctional hydrogel dressing was further proven in vitro by culturing with HaCaT cells. Overall, the benefits of the developed hydrogel wound dressing, including sprayability, adhesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability, highlight its promissing translational potentials in wound management. Statement of Significance Various hydrogel-based wound-dressing materials have been developed to stimulate wound healing. However, from the clinical perspective, few of the current wound dressings meet all the intended multifunctional requirements of preventing infection, promoting rapid wound closure, and minimizing scar formation, while simultaneously offering the convenience of application. In the current study, we adopted a mussel-inspired strategy to functionalize the GelMA hydrogels with DOPA to fabricate GelMA-DOPA hydrogel which exhibited an enhanced binding affinity for wound surfaces, AMP HHC-36 and CeONs are further encapsulated into the GelMA-DOPA hydrogel to confer the hydrogel wound dressing with antimicrobial and ROS-scavenging abilities. The GelMA-DOPA-AMP-CeONs dressing offered the benefits of sprayability, adhesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability, which might address the therapeutic and economic burdens associated with chronic wound treatment and management. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Various hydrogel-based wound-dressing materials have been developed to stimulate wound healing. However, from the clinical perspective, few of the current wound dressings meet all the intended multifunctional requirements of preventing infection, promoting rapid wound closure, and minimizing scar formation, while simultaneously offering the convenience of application. In the current study, we adopted a mussel-inspired strategy to functionalize the GelMA hydrogels with DOPA to fabricate GelMA-DOPA hydrogel which exhibited an enhanced binding affinity for wound surfaces, AMP HHC-36 and CeONs are further encapsulated into the GelMA-DOPA hydrogel to confer the hydrogel wound dressing with antimicrobial and ROS-scavenging abilities. The GelMA-DOPA-AMP-CeONs dressing offered the benefits of sprayability, adhesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability, which might address the therapeutic and economic burdens associated with chronic wound treatment and management.

基金:
语种:
高被引:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 工程技术
小类 | 2 区 工程:生物医学 2 区 材料科学:生物材料
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
JCR分区:
出版当年[2019]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Southern Med Univ, Nanfang Hosp, Dept Orthoped, Guangzhou 510515, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)