高级检索
当前位置: 首页 > 详情页

Raloxifene inhibits IL-6/STAT3 signaling pathway and protects against high-fat-induced atherosclerosis in ApoE -/- mice

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Internal Med,Div Cardiol, Wuhan 430030, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Geriatr, Wuhan, Peoples R China [3]Univ Florida, Coll Pharm, Dept Med Chem, Gainesville, FL USA [4]Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA [5]First Peoples Hosp ShangQiu, Dept Internal Med, Div Cardiol, Shangqiu, Peoples R China
出处:
ISSN:

关键词: Atherosclerosis Raloxifene STAT3 Inflammation

摘要:
Aims: The signal transducer and activator of transcription 3 (STAT3) pathway plays an important role in inflammatory cascade process. Our previous studies found that Raloxifene targeted against IL-6/GP130 proteinprotein interface and inhibited STAT3 phosphorylation induced by IL-6 in cancer cells. However, whether Raloxifene could suppress IL-6/STAT3 signaling pathway and attenuate atherosclerosis in high-fat diet (HFD)-induced mice remains unknown. The objective of this study was to explore the potential effect of Raloxifene on the prevention of atherosclerosis. Main methods: HFD-induced atherosclerosis was established in apoliprotein E-deficient (ApoE( -/-)) mice. Mice by daily intragastric gavage with Raloxifene or vehicle as controls were provided. The human umbilical vein endothelial cells (HUVEC), Rat VSMC and RAW264.7 cell lines were used to evaluate the effect of Raloxifene in vitro. Key findings: We demonstrated that Raloxifene was effective in ameliorating HFD- induced atherosclerosis plaque burden and size. Histological analysis showed that the expression of IL-6, P-STAT3, ICAM-1, VCAM-1, CD68 and alpha-SMA were significantly decreased in the Raloxifene intervention group compared to HFD group. Moreover, we observed that IL-6 increased migration and cell viability of VSMCs and RAW264.7 cells, while Raloxifene treatment decreased migration and reduced cell viability of VSMCs and RAW264.7 cells stimulated by IL-6. Furthermore, this effect was related to blocking IL-6/STAT3 pathway. Significance: Raloxifene has effects on inhibiting atherosclerosis development, the underlying mechanisms might involve in inhibiting inflammation-related IL-6/STAT3 signaling pathway.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 医学:研究与实验 3 区 药学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 药学 3 区 医学:研究与实验
JCR分区:
出版当年[2018]版:
Q2 MEDICINE, RESEARCH & EXPERIMENTAL Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Internal Med,Div Cardiol, Wuhan 430030, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Geriatr, Wuhan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:2 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)