高级检索
当前位置: 首页 > 详情页

Combined analysis of RNA-sequence and microarray data reveals effective metabolism-based prognostic signature for neuroblastoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Pediat Surg,Wuhan 430030,Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Basic Med, Wuhan, Peoples R China
出处:
ISSN:

关键词: long non-coding RNA metabolism neuroblastoma prognosis signature stage 4s

摘要:
The relationship between metabolism reprogramming and neuroblastoma (NB) is largely unknown. In this study, one RNA-sequence data set (n = 153) was used as discovery cohort and two microarray data sets (n = 498 and n = 223) were used as validation cohorts. Differentially expressed metabolic genes were identified by comparing stage 4s and stage 4 NBs. Twelve metabolic genes were selected by LASSO regression analysis and integrated into the prognostic signature. The metabolic gene signature successfully stratifies NB patients into two risk groups and performs well in predicting survival of NB patients. The prognostic value of the metabolic gene signature is also independent with other clinical risk factors. Nine metabolism-related long non-coding RNAs (lncRNAs) were also identified and integrated into the metabolism-related lncRNA signature. The lncRNA signature also performs well in predicting survival of NB patients. These results suggest that the metabolic signatures have the potential to be used for risk stratification of NB. Gene set enrichment analysis (GSEA) reveals that multiple metabolic processes (including oxidative phosphorylation and tricarboxylic acid cycle, both of which are emerging targets for cancer therapy) are enriched in the high-risk NB group, and no metabolic process is enriched in the low-risk NB group. This result indicates that metabolism reprogramming is associated with the progression of NB and targeting certain metabolic pathways might be a promising therapy for NB.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验 3 区 细胞生物学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 细胞生物学 3 区 医学:研究与实验
JCR分区:
出版当年[2018]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q2 CELL BIOLOGY
最新[2023]版:
Q2 CELL BIOLOGY Q2 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Pediat Surg,Wuhan 430030,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:2 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)