高级检索
当前位置: 首页 > 详情页

Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and region restricted dynamic programming

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]South Cent Univ Nationalities, Coll Biomed Engn, Wuhan 430074, Hubei Province, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Radiol, Wuhan 430030, Hubei Province, Peoples R China
出处:
ISSN:

关键词: Left ventricle segmentation Gaussian-mixture model (GMM) Ray scanning Non-maxima gradient suppression Region restricted dynamic programming

摘要:
Segmentation of the left ventricle from cardiac magnetic resonance images (MRI) is very important to quantitatively analyze global and regional cardiac function. The aim of this study is to develop a novel and robust algorithm which can improve the accuracy of automatic left ventricle segmentation on short-axis cardiac MRI. The database used in this study consists of three data sets obtained from the Sunnybrook Health Sciences Centre. Each data set contains 15 cases (4 ischemic heart failures, 4 non-ischemic heart failures, 4 left ventricle (LV) hypertrophies and 3 normal cases). Three key techniques are developed in this segmentation algorithm: (1) ray scanning approach is designed for segmentation of images with left ventricular outflow tract (LVOT), (2) a region restricted technique is employed for epicardial contour extraction, and (3) an edge map with non-maxima gradient suppression approach is put forward to improve the dynamic programming to derive the epicardial boundary. The validation experiments were performed on a pool of data sets of 45 cases. For both endo- and epi-cardial contours of our results, percentage of good contours is about 91%, the average perpendicular distance is about 2 mm. The overlapping dice metric is about 0.92. The regression and determination coefficient between the experts and our proposed method on the ejection fraction (EF) is 1.01 and 0.9375, respectively; they are 0.9 and 0.8245 for LV mass. The proposed segmentation method shows the better performance and is very promising in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases. (C) 2013 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2012]版:
大类 | 4 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 核医学
JCR分区:
出版当年[2011]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2011版] 出版当年五年平均 出版前一年[2010版] 出版后一年[2012版]

第一作者:
第一作者单位: [1]South Cent Univ Nationalities, Coll Biomed Engn, Wuhan 430074, Hubei Province, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:590 今日访问量:0 总访问量:442 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)