高级检索
当前位置: 首页 > 详情页

Multimodal 3D DenseNet for IDH Genotype Prediction in Gliomas

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Jilin, Peoples R China [2]Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China [3]Infervision, Adv Inst, Beijing 100000, Peoples R China [4]Nanchang Univ, Sch Mechatron Engn, Nanchang 330031, Jiangxi, Peoples R China [5]Tongji Hosp, Dept Radiol, Wuhan 430030, Hubei, Peoples R China [6]Jilin Univ, China Japan Union Hosp, Canc Syst Biol Ctr, Changchun 130033, Jilin, Peoples R China
出处:
ISSN:

关键词: multimodal deep learning three-dimensional DenseNet model isocitrate dehydrogenase genotype magnetic resonance imaging gliomas World Health Organization grade

摘要:
Non-invasive prediction of isocitrate dehydrogenase (IDH) genotype plays an important role in tumor glioma diagnosis and prognosis. Recently, research has shown that radiology images can be a potential tool for genotype prediction, and fusion of multi-modality data by deep learning methods can further provide complementary information to enhance prediction accuracy. However, it still does not have an effective deep learning architecture to predict IDH genotype with three-dimensional (3D) multimodal medical images. In this paper, we proposed a novel multimodal 3D DenseNet (M3D-DenseNet) model to predict IDH genotypes with multimodal magnetic resonance imaging (MRI) data. To evaluate its performance, we conducted experiments on the BRATS-2017 and The Cancer Genome Atlas breast invasive carcinoma (TCGA-BRCA) dataset to get image data as input and gene mutation information as the target, respectively. We achieved 84.6% accuracy (area under the curve (AUC) = 85.7%) on the validation dataset. To evaluate its generalizability, we applied transfer learning techniques to predict World Health Organization (WHO) grade status, which also achieved a high accuracy of 91.4% (AUC = 94.8%) on validation dataset. With the properties of automatic feature extraction, and effective and high generalizability, M3D-DenseNet can serve as a useful method for other multimodal radiogenomics problems and has the potential to be applied in clinical decision making.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 3 区 生物
小类 | 3 区 遗传学
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 遗传学
JCR分区:
出版当年[2016]版:
Q2 GENETICS & HEREDITY
最新[2023]版:
Q2 GENETICS & HEREDITY

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者单位: [1]Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Jilin, Peoples R China [2]Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
通讯作者:
通讯机构: [1]Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Jilin, Peoples R China [2]Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China [6]Jilin Univ, China Japan Union Hosp, Canc Syst Biol Ctr, Changchun 130033, Jilin, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:590 今日访问量:0 总访问量:442 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)