高级检索
当前位置: 首页 > 详情页

Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Weill Cornell Med Coll, Dept Populat Hlth Sci, New York, NY 10065 USA [2]Weill Cornell Med Coll, Dept Radiol, New York, NY USA [3]Weill Cornell Med Coll, Brain & Mind Inst, New York, NY USA [4]Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO USA [5]Tongji Hosp, Dept Radiol, Wuhan, Peoples R China [6]Weill Cornell Med Coll, Dept Neurol, New York, NY USA
出处:
ISSN:

摘要:
We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm(3) or 50 mm(3). We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm(3). This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 1 区 神经成像 2 区 神经科学 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 神经成像 2 区 神经科学 2 区 核医学
JCR分区:
出版当年[2019]版:
Q1 NEUROIMAGING Q1 NEUROSCIENCES Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 NEUROIMAGING Q1 NEUROSCIENCES Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Weill Cornell Med Coll, Dept Populat Hlth Sci, New York, NY 10065 USA
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)