单位:[1]Weill Cornell Med Coll, Dept Populat Hlth Sci, New York, NY 10065 USA[2]Weill Cornell Med Coll, Dept Radiol, New York, NY USA[3]Weill Cornell Med Coll, Brain & Mind Inst, New York, NY USA[4]Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO USA[5]Tongji Hosp, Dept Radiol, Wuhan, Peoples R China放射科华中科技大学同济医学院附属同济医院[6]Weill Cornell Med Coll, Dept Neurol, New York, NY USA
We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm(3) or 50 mm(3). We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm(3). This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.
基金:
National Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [R01 NS090464, R01 NS105144, R01 NS104283]; National Multiple Sclerosis SocietyNational Multiple Sclerosis Society [RR-1602-07671]
语种:
外文
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类|2 区医学
小类|1 区神经成像2 区神经科学2 区核医学
最新[2025]版:
大类|2 区医学
小类|1 区神经成像2 区神经科学2 区核医学
JCR分区:
出版当年[2019]版:
Q1NEUROIMAGINGQ1NEUROSCIENCESQ1RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1NEUROIMAGINGQ1NEUROSCIENCESQ1RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
第一作者单位:[1]Weill Cornell Med Coll, Dept Populat Hlth Sci, New York, NY 10065 USA
通讯作者:
推荐引用方式(GB/T 7714):
Sweeney Elizabeth M.,Nguyen Thanh D.,Kuceyeski Amy,et al.Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging[J].NEUROIMAGE.2021,225:doi:10.1016/j.neuroimage.2020.117451.
APA:
Sweeney, Elizabeth M.,Nguyen, Thanh D.,Kuceyeski, Amy,Ryan, Sarah M.,Zhang, Shun...&Gauthier, Susan A..(2021).Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging.NEUROIMAGE,225,
MLA:
Sweeney, Elizabeth M.,et al."Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging".NEUROIMAGE 225.(2021)