单位:[1]Huazhong Univ Sci & Technol,Tongji Med Coll,Tongji Hosp,Inst Pathol,Wuhan,Hubei,Peoples R China病理研究所华中科技大学同济医学院附属同济医院病理科[2]Univ Western Ontario, Schulich Sch Med & Dent, Dept Physiol & Pharmacol, London, ON, Canada[3]Cent S Univ, Xiangya Hosp 2, Dept Metab & Endocrinol, Changsha, Hunan, Peoples R China
Offspring of diabetic mothers are at risk of cardiovascular diseases in adulthood. However, the underlying molecular mechanisms are not clear. We hypothesize that prenatal exposure to maternal diabetes up-regulates myocardial NOX2 expression and enhances ischaemia/reperfusion (I/R) injury in the adult offspring. Maternal diabetes was induced in C57BL/6 mice by streptozotocin. Glucose-tolerant adult offspring of diabetic mothers and normal controls were subjected to myocardial I/R injury. Vascular endothelial growth factor (VEGF) expression, ROS generation, myocardial apoptosis and infarct size were assessed. The VEGF-Akt (protein kinase B)-mammalian target of rapamycin (mTOR)-NOX2 signalling pathway was also studied in cultured cardiomyocytes in response to high glucose level. In the hearts of adult offspring from diabetic mothers, increases were observed in VEGF expression, NOX2 protein levels and both Akt and mTOR phosphorylation levels as compared to the offspring of control mothers. After I/R, ROS generation, myocardial apoptosis and infarct size were all significantly higher in the offspring of diabetic mothers relative to offspring of control mothers, and these differences were diminished by invivo treatment with the NADPH oxidase inhibitor apocynin. In cultured cardiomyocytes, high glucose increased mTOR phosphorylation, which was inhibited by the PI3 kinase inhibitor LY294002. Notably, high glucose-induced NOX2 protein expression and ROS production were inhibited by rapamycin. In conclusion, maternal diabetes promotes VEGF-Akt-mTOR-NOX2 signalling and enhances myocardial I/R injury in the adult offspring. Increased ROS production from NOX2 is a possible molecular mechanism responsible for developmental origins of cardiovascular disease in offspring of diabetic mothers.
基金:
Canadian Institutes of Health Research [MOP-119600, MOP-142383]; National Natural Science Foundation of China [81270176, 81570254]
第一作者单位:[1]Huazhong Univ Sci & Technol,Tongji Med Coll,Tongji Hosp,Inst Pathol,Wuhan,Hubei,Peoples R China[2]Univ Western Ontario, Schulich Sch Med & Dent, Dept Physiol & Pharmacol, London, ON, Canada
通讯作者:
通讯机构:[1]Huazhong Univ Sci & Technol,Tongji Med Coll,Tongji Hosp,Inst Pathol,Wuhan,Hubei,Peoples R China[2]Univ Western Ontario, Schulich Sch Med & Dent, Dept Physiol & Pharmacol, London, ON, Canada
推荐引用方式(GB/T 7714):
Zhang Lili,Wang Xiaoyan,Wu Yan,et al.Maternal diabetes up-regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring[J].JOURNAL OF CELLULAR AND MOLECULAR MEDICINE.2018,22(4):2200-2209.doi:10.1111/jcmm.13500.
APA:
Zhang, Lili,Wang, Xiaoyan,Wu, Yan,Lu, Xiangru,Chidiac, Peter...&Feng, Qingping.(2018).Maternal diabetes up-regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring.JOURNAL OF CELLULAR AND MOLECULAR MEDICINE,22,(4)
MLA:
Zhang, Lili,et al."Maternal diabetes up-regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring".JOURNAL OF CELLULAR AND MOLECULAR MEDICINE 22..4(2018):2200-2209