高级检索
当前位置: 首页 > 详情页

NR2B receptor- and calpain-mediated KCC2 cleavage resulted in cognitive deficiency exposure to isoflurane

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Anesthesiol, 1095 JieFang Ave, Wuhan 430030, Hubei, Peoples R China
出处:
ISSN:

关键词: Isoflurane NMDA receptor Calpain KCC2 Cognitive deficiency

摘要:
Background: During brain development, volatile anesthetic can rapidly interfere with physiologic patterns of dendritic development and synaptogenesis and impair the formation of precise neuronal circuits. KCC2 plays vital roles in spine development and synaptogenesis through its Cl- transport function and structural interactions with the spine cytoskeleton protein 4.1 N. The aim of this study was to dissect the mechanism of volatile anesthetics, which impair dendritic development and synaptogenesis via mediation of KCC2 cleavage. Methods: Westernblotting was employed to assess the expression change of NR2B, NR2A, calpain-1, calpain-2, KCC2, and 4.1 N protein of rat (PND 5). Co-immunoprecipitation was applied to demonstrate the interaction between KCC2 and 4.1 N protein. Long-term cognitive deficiency was assessed by MWM. Lentivirus-calpain-2 was administered by hippocampus stereotaxic injection. Results: There was a significant increase in the level of NR2B instead of NR2A exposure to isoflurane. Calpain-2 was excessively activated via NR2B after 6 h of isoflurane exposure. The expression of plasmalemmal KCC2 and 4.1 N protein was significantly decreased treated with isoflurane. The isoflurane group showed longer traveled distance, prolonged escape latency, less time spent in the target quadrant, and decreased platform crossings. Pretreatment with ifenprodil and downregulated calpain-2 expression significantly alleviated these neurotoxicity responses and cognitive deficiency after isoflurane exposure. Conclusions: A significant increase in NR2B, excessive activation of calpain-2 and increased cleavage of plasmalemmal KCC2, are involved in isoflurane-induced neurotoxicity and long-term cognitive deficiency. Blocking NR2B and calpain-2 activity significantly attenuated these responses. The KCC2 cleavage mediated by NR2B and calpain-2 is a major determinant of isoflurane-induced long-term cognitive deficiency.

基金:

基金编号: 81500982 2017CFB171

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 神经科学 3 区 药学 3 区 毒理学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 毒理学 3 区 神经科学 3 区 药学
JCR分区:
出版当年[2018]版:
Q2 PHARMACOLOGY & PHARMACY Q2 TOXICOLOGY Q2 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES Q2 PHARMACOLOGY & PHARMACY Q2 TOXICOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Anesthesiol, 1095 JieFang Ave, Wuhan 430030, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)