高级检索
当前位置: 首页 > 详情页

A machine learning-based biological aging prediction and its associations with healthy lifestyles: the Dongfeng-Tongji cohort.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ SSCI

单位: [1]Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. [2]Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, Hubei, China. [3]Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
出处:
ISSN:

关键词: biological aging machine learning mortality risk healthy lifestyles cohort study

摘要:
This study aims to establish a biological age (BA) predictor and to investigate the roles of lifestyles on biological aging. The 14,848 participants with the available information of multisystem measurements from the Dongfeng-Tongji cohort were used to estimate BA. We developed a composite BA predictor showing a high correlation with chronological age (CA) (r = 0.82) by using an extreme gradient boosting (XGBoost) algorithm. The average frequency hearing threshold, forced expiratory volume in 1 second (FEV1 ), gender, systolic blood pressure, and homocysteine ranked as the top five important features for the BA predictor. Two aging indexes, recorded as the AgingAccel (the residual from regressing predicted age on CA) and aging rate (the ratio of predicted age to CA), showed positive associations with the risks of all-cause (HR (95% CI) = 1.12 (1.10-1.14) and 1.08 (1.07-1.10), respectively) and cause-specific (HRs ranged from 1.06 to ∼1.15) mortality. Each 1-point increase in healthy lifestyle score (including normal body mass index, never smoking, moderate alcohol drinking, physically active, and sleep 7-9 h/night) was associated with a 0.21-year decrease in the AgingAccel (95% CI: -0.27 to -0.15) and a 0.4% decrease in the aging rate (95% CI: -0.5% to -0.3%). This study developed a machine learning-based BA predictor in a prospective Chinese cohort. Adherence to healthy lifestyles showed associations with delayed biological aging, which highlights potential preventive interventions.© 2021 New York Academy of Sciences.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
最新[2025]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2020]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
通讯作者:
通讯机构: [1]Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. [*1]Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, Hubei 430030, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)