高级检索
当前位置: 首页 > 详情页

Machine learning-based model for prediction of deep vein thrombosis after gynecological laparoscopy: A retrospective cohort study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department Gynaecology and Obstetrics,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,P.R. China.
出处:
ISSN:

关键词: deep vein thrombosis gynecological laparoscopy machine learning algorithms prediction risk factor

摘要:
Successful monitoring of deep vein thrombosis (DVT) remains a challenging problem after gynecological laparoscopy. Thus, this study aimed to create and validate predictive models for DVT with the help of machine learning (ML) algorithms. A total of 489 patients from the Cancer Biology Research Center, Tongji Hospital were included in the study between January 2017 and February 2023, and 35 clinical indicators from electronic health records (EHRs) were collected within 24h of patient admission. Risk factors were identified using the least absolute shrinkage and selection operator (LASSO) regression. Then, the three commonly used DVT prediction models are random forest model (RFM), generalized linear regression model (GLRM), and artificial neural network model (ANNM). In addition, the predictive performance of various prediction models (i.e. the robustness and accuracy of predictions) is evaluated through the receiver operating characteristic curve (ROC) and decision curve analysis (DCA), respectively. We found postoperative DVT in 41 (8.38%) patients. Based on the ML algorithm, a total of 13 types of clinical data were preliminarily screened as candidate variables for DVT prediction models. Among these, age, body mass index (BMI), operation time, intraoperative pneumoperitoneum pressure (IPP), diabetes, complication and D-Dimer independent risk factors for postoperative DVT and can be used as variables in ML prediction models. The RFM algorithm can achieve the optimal DVT prediction performance, with AUC values of 0.851 (95% CI: 0.793-0.909) and 0.862 (95% CI: 0.804-0.920) in the training and validation sets, respectively. The AUC values of the other two prediction models (ANNM and GLRM) range from 0.697 (95% CI: 0.639-0.755) and 0.813 (95% CI: 0.651-0.767). In summary, we explored the potential risk of DVT after gynecological laparoscopy, which helps clinicians identify high-risk patients before gynecological laparoscopy and make nursing interventions. However, external validation will be needed in the future.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 4 区 医学
小类 | 4 区 医学:内科
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:内科
JCR分区:
出版当年[2022]版:
Q3 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q2 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Department Gynaecology and Obstetrics,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,P.R. China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)