高级检索
当前位置: 首页 > 详情页

Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ SSCI ◇ EI

单位: [1]Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [3]Huazhong Univ Sci & Technol, Innovat Inst, Wuhan 430074, Peoples R China [4]Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China [5]Huazhong Univ Sci & Technol,Tongji Med Coll,Tongji Hosp,Dept Urol,Wuhan 430074,Peoples R China
出处:
ISSN:

关键词: mental fatigue nonintrusive monitoring physiological signals epidermal electronics machine learning

摘要:
Mental fatigue, characterized by subjective feelings of "tiredness" and "lack of energy", can degrade individual performance in a variety of situations, for example, in motor vehicle driving or while performing surgery. Thus, a method for nonintrusive monitoring of mental fatigue status is urgently needed. Recent research shows that physiological signal-based fatigue-classification methods using wearable electronics can be sufficiently accurate; by contrast, rigid, bulky devices constrain the behavior of those wearing them, potentially interfering with test signals. Recently, wearable electronics, such as epidermal electronics systems (EES) and electronic tattoos (E-tattoos), have been developed to meet the requirements for the comfortable measurement of various physiological signals. However, comfortable, effective, and nonintrusive monitoring of mental fatigue levels remains to be fulfilled. In this work, an EES is established to simultaneously detect multiple physiological signals in a comfortable and nonintrusive way. Machine-learning algorithms are employed to determine the mental fatigue levels and a predictive accuracy of up to 89% is achieved based on six different kinds of physiological features using decision tree algorithms. Furthermore, EES with the trained predictive model are applied to monitor in situ human mental fatigue levels when doing several routine research jobs, as well as the effect of relaxation methods in relieving fatigue.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 1 区 化学
小类 | 1 区 分析化学 2 区 化学综合 3 区 纳米科技
最新[2025]版:
大类 | 1 区 化学
小类 | 1 区 分析化学 2 区 化学:综合 2 区 纳米科技
JCR分区:
出版当年[2018]版:
Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, ANALYTICAL
最新[2023]版:
Q1 CHEMISTRY, ANALYTICAL Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [3]Huazhong Univ Sci & Technol, Innovat Inst, Wuhan 430074, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China [2]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China [3]Huazhong Univ Sci & Technol, Innovat Inst, Wuhan 430074, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)