高级检索
当前位置: 首页 > 详情页

Identification of driver genes in lupus nephritis based on comprehensive bioinformatics and machine learning

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Div Nephrol, Wuhan, Peoples R China [2]Minist Educ, Key Lab Organ Transplantat, Wuhan, Peoples R China [3]Chinese Acad Med Sci, NHC Key Lab Organ Transplantat, Wuhan, Peoples R China [4]Chinese Acad Med Sci, Key Lab Organ Transplantat, Wuhan, Peoples R China [5]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Nutr, Wuhan, Peoples R China
出处:
ISSN:

关键词: Lupus nephritis bioinformatics machine learning immune infiltration WGCNA

摘要:
Background: Lupus nephritis (LN) is a common and severe glomerulonephritis that often occurs as an organ manifestation of systemic lupus erythematosus (SLE). However, the complex pathological mechanisms associated with LN have hindered the progress of targeted therapies.Methods: We analyzed glomerular tissues from 133 patients with LN and 51 normal controls using data obtained from the GEO database. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was utilized to identify key gene modules. The least absolute shrinkage and selection operator (LASSO) and random forest were used to identify hub genes. We also analyzed immune cell infiltration using CIBERSORT. Additionally, we investigated the relationships between hub genes and clinicopathological features, as well as examined the distribution and expression of hub genes in the kidney.Results: A total of 270 DEGs were identified in LN. Using weighted gene co-expression network analysis (WGCNA), we clustered these DEGs into 14 modules. Among them, the turquoise module displayed a significant correlation with LN (cor=0.88, p<0.0001). Machine learning techniques identified four hub genes, namely CD53 (AUC=0.995), TGFBI (AUC=0.997), MS4A6A (AUC=0.994), and HERC6 (AUC=0.999), which are involved in inflammation response and immune activation. CIBERSORT analysis suggested that these hub genes may contribute to immune cell infiltration. Furthermore, these hub genes exhibited strong correlations with the classification, renal function, and proteinuria of LN. Interestingly, the highest hub gene expression score was observed in macrophages.Conclusion: CD53, TGFBI, MS4A6A, and HERC6 have emerged as promising candidate driver genes for LN. These hub genes hold the potential to offer valuable insights into the molecular diagnosis and treatment of LN.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 免疫学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 免疫学
JCR分区:
出版当年[2021]版:
Q1 IMMUNOLOGY
最新[2023]版:
Q1 IMMUNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Div Nephrol, Wuhan, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Div Nephrol, Wuhan, Peoples R China [2]Minist Educ, Key Lab Organ Transplantat, Wuhan, Peoples R China [3]Chinese Acad Med Sci, NHC Key Lab Organ Transplantat, Wuhan, Peoples R China [4]Chinese Acad Med Sci, Key Lab Organ Transplantat, Wuhan, Peoples R China [5]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Nutr, Wuhan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:2 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)