高级检索
当前位置: 首页 > 详情页

Machine learning-based tumor-infiltrating immune cell-associated lncRNAs for predicting prognosis and immunotherapy response in patients with glioblastoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Xiangya Hosp, Dept Neurosurg, Changsha, Peoples R China [2]Chongqing Med Univ, Affiliated Hosp 6, Affiliated Hosp 2, Dept Neurosurg, Chongqing, Peoples R China [3]Huazhong Univ Sci & Technol, COLL Life Sci & Technol, Wuhan, Peoples R China [4]Xiangya Hosp, Dept Oncol, Changsha, Peoples R China [5]Univ Manchester, Div Neurosci & Expt Psychol, Manchester, Lancs, England [6]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Thyroid & Breast Surg, Wuhan, Peoples R China [7]First Affiliated Hosp Zhengzhou, Dept Oncol, Zhengzhou, Peoples R China [8]Zhujiang Hosp, Dept Neurosurg, Guangzhou, Peoples R China
出处:
ISSN:

关键词: immunotherapy glioblastoma lncRNA immune checkpoint immune infiltration prognosis

摘要:
Long noncoding ribonucleic acids (RNAs; lncRNAs) have been associated with cancer immunity regulation. However, the roles of immune cell-specific lncRNAs in glioblastoma (GBM) remain largely unknown. In this study, a novel computational framework was constructed to screen the tumor-infiltrating immune cell-associated lncRNAs (TIIClnc) for developing TIIClnc signature by integratively analyzing the transcriptome data of purified immune cells, GBM cell lines and bulk GBM tissues using six machine learning algorithms. As a result, TIIClnc signature could distinguish survival outcomes of GBM patients across four independent datasets, including the Xiangya in-house dataset, and more importantly, showed superior performance than 95 previously established signatures in gliomas. TIIClnc signature was revealed to be an indicator of the infiltration level of immune cells and predicted the response outcomes of immunotherapy. The positive correlation between TIIClnc signature and CD8, PD-1 and PD-L1 was verified in the Xiangya in-house dataset. As a newly demonstrated predictive biomarker, the TIIClnc signature enabled a more precise selection of the GBM population who would benefit from immunotherapy and should be validated and applied in the near future.

基金:
语种:
高被引:
热点:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版
大类 | 2 区 生物学
小类 | 2 区 生化研究方法 2 区 数学与计算生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 1 区 数学与计算生物学 2 区 生化研究方法
JCR分区:
出版当年[2020]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Xiangya Hosp, Dept Neurosurg, Changsha, Peoples R China [2]Chongqing Med Univ, Affiliated Hosp 6, Affiliated Hosp 2, Dept Neurosurg, Chongqing, Peoples R China
通讯作者:
通讯机构: [1]Xiangya Hosp, Dept Neurosurg, Changsha, Peoples R China [*1]Ctr South Univ, Xiangya Hosp, Dept Neurosurg, Changsha 410008, Hunan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)