高级检索
当前位置: 首页 > 详情页

Automatic Measurement of Endometrial Thickness From Transvaginal Ultrasound Images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Univ Aizu, Biomed Informat Engn Lab, Aizu Wakamatsu, Fukushima, Japan [2]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Obstet & Gynecol, Wuhan, Peoples R China
出处:
ISSN:

关键词: endometrial thickness semantic segmentation deep learning transvaginal ultrasonography (TVUS) two-step method

摘要:
Purpose: Endometrial thickness is one of the most important indicators in endometrial disease screening and diagnosis. Herein, we propose a method for automated measurement of endometrial thickness from transvaginal ultrasound images.Methods: Accurate automated measurement of endometrial thickness relies on endometrium segmentation from transvaginal ultrasound images that usually have ambiguous boundaries and heterogeneous textures. Therefore, a two-step method was developed for automated measurement of endometrial thickness. First, a semantic segmentation method was developed based on deep learning, to segment the endometrium from 2D transvaginal ultrasound images. Second, we estimated endometrial thickness from the segmented results, using a largest inscribed circle searching method. Overall, 8,119 images (size: 852 x 1136 pixels) from 467 cases were used to train and validate the proposed method.Results: We achieved an average Dice coefficient of 0.82 for endometrium segmentation using a validation dataset of 1,059 images from 71 cases. With validation using 3,210 images from 214 cases, 89.3% of endometrial thickness errors were within the clinically accepted range of +/- 2 mm.Conclusion: Endometrial thickness can be automatically and accurately estimated from transvaginal ultrasound images for clinical screening and diagnosis.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 工程技术
小类 | 2 区 综合性期刊
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 生物工程与应用微生物 4 区 工程:生物医学
JCR分区:
出版当年[2020]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Univ Aizu, Biomed Informat Engn Lab, Aizu Wakamatsu, Fukushima, Japan
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:413 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)