高级检索
当前位置: 首页 > 详情页

Quantitative assessment of right ventricular size and function with multiple parameters from artificial intelligence-based three-dimensional echocardiography: A comparative study with cardiac magnetic resonance

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, 1095 Jiefang Rd, Wuhan 430030, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan, Peoples R China
出处:
ISSN:

关键词: artificial intelligence multiple parameters right ventricle three-dimensional echocardiography

摘要:
Aims This study aimed to explore the validation and the diagnostic value of multiple right ventricle (RV) volumes and functional parameters derived from a novel artificial intelligence (AI)-based three-dimensional echocardiography (3DE) algorithm compared to cardiac magnetic resonance (CMR). Methods and results A total of 51 patients with a broad spectrum of clinical diagnoses were finally included in this study. AI-based RV 3DE was performed in a single-beat HeartModel mode within 24 hours after CMR. In the entire population, RV volumes and right ventricular ejection fraction (RVEF) measured by AI-based 3DE showed statistically significant correlations with the corresponding CMR analysis (p < 0.05 for all). However, the Bland-Altman plots indicated that these parameters were slightly underestimated by AI-based 3DE. Based on CMR derived RVEF < 45% as RV dysfunction, end-systolic volume (ESV), end-systolic volume index (ESVi), stroke volume (SV), and RVEF showed great diagnostic performance in identifying RV dysfunction, as well as some non-volumetric parameters, including tricuspid annular systolic excursion (TAPSE), fractional area change (FAC), and free-wall longitudinal strains (LS) (p < 0.05 for all). The cutoff value was 43% for RVEF with a sensitivity of 94% and specificity of 67%. Conclusion AI-based 3DE could provide rapid and accurate quantitation of the RV volumes and function with multiple parameters. Both volumetric and non-volumetric measurements derived from AI-based 3DE contributed to the identification of the RV dysfunction.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 医学
小类 | 4 区 心脏和心血管系统
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 心脏和心血管系统
JCR分区:
出版当年[2020]版:
Q4 CARDIAC & CARDIOVASCULAR SYSTEMS
最新[2023]版:
Q3 CARDIAC & CARDIOVASCULAR SYSTEMS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, 1095 Jiefang Rd, Wuhan 430030, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:590 今日访问量:0 总访问量:442 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)