高级检索
当前位置: 首页 > 详情页

Iron metabolism protein transferrin receptor 1 involves in cervical cancer progression by affecting gene expression and alternative splicing in HeLa cells

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Allergy, Wuhan 430030, Hubei, Peoples R China [2]ABLife Inc, Ctr Genome Anal, Wuhan, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Oncol Dept, Wuhan, Peoples R China [4]Wuhan Ruixing Biotechnol Co Ltd, Sci Dept, Wuhan, Peoples R China
出处:
ISSN:

关键词: TFR1 RNA-seq Gene expression Alternative splicing Cell physiology

摘要:
Background Transferrin receptor 1 (TfR1), encoded by TFRC, is a key regulator of iron homeostasis and plays important roles in many diseases, including cancers. Objective To decipher the underlying molecular functions of TfR1 based on its influence on transcriptome profile in cancer cells. Methods In this study, we first identified the expression pattern and prognostic influence of TFRC in cervical cancer patients from TCGA database. To explore the regulatory outcomes of TfR1 from the view of whole transcriptome profile, we generated TFRC knockdown (TFRC-KD) HeLa cells and negative control (NC) cells using short hairpin RNA (shRNA) method. Unbiased transcriptome sequencing (RNA-seq) experiment was used to analyze the global expression level and alternative splicing (AS) changes between TFRC-KD and NC cells. Results We found TFRC was consistently elevated in cervical cancer samples and tightly associated with prognosis of patients. Differential expression analysis revealed that 629 differentially expressed genes (DEGs) were identified between TFRC-KD and NC. Functional enrichment analysis of these DEGs revealed that TFRC-KD extensively disturbed cell physiology related pathways, including immunity, cell metabolism and gene expression. Moreover, dysregulated AS profile also indicated that TfR1 has important roles in the AS regulation. Hundreds of TfR1-regulated AS genes were involved in DNA repair, cell death, transcription and viral reproduction pathways, which were tightly associated with cancer cell progression. Conclusions In summary, we for the first time explored the molecular functions of TfR1 at transcriptional and post-transcriptional levels. These results demonstrate TfR1 participates in the progression of cervical cancer by affecting the expression and AS levels of genes in cancer associated pathways, which greatly extends our understanding of TfR1 functions besides iron homeostasis and provide novel options in cancer treatment by targeting TfR1.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 4 区 生物学
小类 | 4 区 生化与分子生物学 4 区 生物工程与应用微生物 4 区 遗传学
最新[2025]版:
大类 | 4 区 生物学
小类 | 4 区 生化与分子生物学 4 区 生物工程与应用微生物 4 区 遗传学
JCR分区:
出版当年[2020]版:
Q4 GENETICS & HEREDITY Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
最新[2023]版:
Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q4 GENETICS & HEREDITY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Allergy, Wuhan 430030, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)