高级检索
当前位置: 首页 > 详情页

Discriminative analysis of multivariate features from structural MRI and diffusion tensor images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610064, Peoples R China [2]Huazhong Univ Sci & Technol, Tongji Med Coll, Dept Radiol, Tongji Hosp, Wuhan 430030, Peoples R China [3]Shandong Univ, Shandong Med Imaging Res Inst, Jinan 250021, Peoples R China
出处:
ISSN:

关键词: Alzheimer's disease Support vector machine Diffusion tensor image Volumetric feature Tract-based feature

摘要:
Imaging markers derived from magnetic resonance images, together with machine learning techniques allow for the recognition of unique anatomical patterns and further differentiating Alzheimer's disease (AD) from normal states. T1-based imaging markers, especially volumetric patterns have demonstrated their discriminative potential, however, rely on the tissue abnormalities of gray matter alone. White matter abnormalities and their contribution to AD discrimination have been studied by measuring voxel-based intensities in diffusion tensor images (DTI); however, no systematic study has been done on the discriminative power of either region-of-interest (ROI)-based features from DTI or the combined features extracted from both T1 images and DTI. ROI-based analysis could potentially reduce the feature dimensionality of DTI indices, usually from more than 10e + 5, to 10-150 which is almost equal to the order of magnitude with respect to volumetric features from T1. Therefore it allows for straight forward combination of intensity based landmarks of DTI indices and volumetric features of T1. In the present study, the feasibility of tract-based features related to Alzheimer's disease was first evaluated by measuring its discriminative capability using support vector machine on fractional anisotropy (FA) maps collected from 21 subjects with Alzheimer's disease and 15 normal controls. Then the performance of the tract-based FA + gray matter volumes-combined feature was evaluated by cross-validation. The combined feature yielded good classification result with 94.3% accuracy, 95.0% sensitivity, 93.3% specificity, and 0.96 area under the receiver operating characteristic curve. The tract-based FA and the tract-based FA + gray matter volumes-combined features are certified their feasibilities for the recognition of anatomical features and may serve to complement classification methods based on other imaging markers. (C) 2014 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 4 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 核医学
JCR分区:
出版当年[2012]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2012版] 出版当年五年平均 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者单位: [1]Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610064, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)