高级检索
当前位置: 首页 > 详情页

Metabonomic characteristics and biomarker research of human lung cancer tissues by HR 1H NMR spectroscopy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China [2]Fudan Univ, Dept Pathol, Zhongshan Hosp, Shanghai 200433, Peoples R China [3]Fudan Univ, Zhongshan Hosp, Dept Resp Med, Shanghai 200433, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Thorac Surg, Wuhan 430074, Hubei, Peoples R China
出处:
ISSN:

关键词: Lung cancer NMR spectroscopy metabonomics multivariate data analysis (MVDA) diagnosis

摘要:
BACKGROUND: The combination of NMR spectroscopy and multivariate data analysis (MVDA), such as orthogonal partial least squares-discriminant analysis (OPLS-DA), has been collectively acknowledged as an excellent tool to investigate tissue metabolism and provide metabolite information for the diagnosis of disease, and become an important metabonomic platform for studies in biological tissues so far. METHODS: Both ex vivo high resolution magic-angle spinning H-1 NMR and in vitro H-1 NMR spectroscopy technique were synchronously employed to analyze the metabonomic characteristics of 102 lung tissues from 34 patients with lung cancer in hope to identify potential diagnostic biomarkers for malignancy detection in lung tissues. RESULTS: Significant elevations in the levels of lipids and lactate and significant reductions in the levels of myo-inositol and valine in the cancer tissues had been identified when compared with the adjacent non-involved tissues. Furthermore, the OPLSDA models calculated by two H-1 NMR spectra provided for relatively high sensitivity, specificity and good prediction accuracy in the identification of class membership regardless of the number of metabolites involved. CONCLUSIONS: MVDA in combination with H-1 NMR spectra highlighted the potential of metabonomics in clinical settings so that the techniques might be further exploited for future lung cancer biomarker research or identification.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2015]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2014]版:
Q4 ONCOLOGY
最新[2023]版:
Q3 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2014版] 出版当年五年平均 出版前一年[2013版] 出版后一年[2015版]

第一作者:
第一作者单位: [1]Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)