高级检索
当前位置: 首页 > 详情页

Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Impairment by Enhancing Neurogenesis and Suppressing Apoptosis in the Hippocampus in Rats with Ischemic Stroke

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Rehabil Med, Wuhan, Hubei, Peoples R China [2]Cent Hosp Wuhan, Dept Obstet & Gynecol, Wuhan, Hubei, Peoples R China
出处:
ISSN:

关键词: rTMS focal cerebral ischemia cognitive impairment hippocampal neurogenesis BDNF signaling pathway

摘要:
Cognitive impairment is a serious mental deficit caused by stroke that can severely affect the quality of a survivor's life. Repetitive transcranial magnetic stimulation (rTMS) is a well-known rehabilitation modality that has been reported to exert neuroprotective effects after cerebral ischemic injury. In the present study, we evaluated the therapeutic efficacy of rTMS against post-stroke cognitive impairment (PSCI) and investigated the mechanisms underlying its effects in a middle cerebral artery occlusion (MCAO) rat model. The results showed that rTMS ameliorated cognitive deficits and tended to reduce the sizes of cerebral lesions. In addition, rTMS significantly improved cognitive function via a mechanism involving increased neurogenesis and decreased apoptosis in the ipsilateral hippocampus. Moreover, brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), were clearly upregulated in ischemic hippocampi after treatment with rTMS. Additionally, further studies demonstrated that rTMS markedly enhanced the expression of the apoptosis-related B cell lymphoma/leukemia gene 2 (Bcl-2) and decreased the expression of the Bcl-2-associated protein X (Bax) and the number of TUNEL-positive cells in the ischemic hippocampus. Both protein levels and mRNA levels were investigated. Our findings suggest that after ischemic stroke, treatment with rTMS promoted the functional recovery of cognitive impairments by inhibiting apoptosis and enhancing neurogenesis in the hippocampus and that this mechanism might be mediated by the BDNF signaling pathway.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 2 区 医学
小类 | 2 区 生理学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 生理学
JCR分区:
出版当年[2015]版:
Q1 PHYSIOLOGY
最新[2023]版:
Q2 PHYSIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Rehabil Med, Wuhan, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:589 今日访问量:0 总访问量:441 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)