高级检索
当前位置: 首页 > 详情页

Foxk2 inhibits non-small cell lung cancer epithelial-mesenchymal transition and proliferation through the repression of different key target genes

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Dept Resp & Crit Care Med, Tongji Med Coll, 1095 Jiefang Ave, Wuhan 430030, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Union Hosp, Dept Cardiovasc Surg, Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China
出处:
ISSN:

关键词: Foxk2 epithelial-mesenchymal transition proliferation N-cadherin Snail cyclin Dl CDK4 miR-1271

摘要:
Increasing evidence suggests that numerous forkhead transcription factors are required to repress the mammalian cells phenotype. Among them, Foxk2 is a ubiquitously expressed family member, but the role of Foxk2 in mediating tumor metastasis in non-small cell lung cancer has not been explored. In this investigation reduced Foxk2 expression was found in lung adenocarcinoma tissues compared with the adjacent non-tumor tissues, and was associated with better overall survival. Low expression was also found in the NSCLC cell lines such as A549, NCI-H520, H1299, H358 and H460 cells. Recombinant lentivirus expressing Foxk2 constructs or ShFoxk2 were developed and transfected into A549 cells or NCI-H520 cells, immunofluorescence assay, qRT-PCR, and western blot analysis were used to measure the change of the epithelial markers, E-cadherin and a-catenin, and mesenchymal markers N-cadherin and vimentin. Wound healing assay and Transwell assay were used to measure the relative cell invasion ability. MTT assay, Edu assay, and cell cycle distribution analysis were used to confirm the effect of Foxk2 on cell proliferation. ChIP-seq, qChIP, as well as luciferase reporter gene assays were used to detect the target genes regulated by Foxk2, Bioinformatics predicated the potential miRNAs that could target Foxk2. Our study demonstrated that Foxk2 played major roles in NSCLC EMT by directly targeting N-cadherin and Snail, we found that Foxk2 regulated NSCLC cell growth by suppressing the expression of cyclin D1 and CDK4, which suggested that Foxk2 might be a multifunctional regulator in NSCLC. The expression of Foxk2 may be regulated by miR-1271, which could serve as a promising therapeutic target for NSCLC.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2015]版:
Q3 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者单位: [2]Huazhong Univ Sci & Technol, Union Hosp, Dept Cardiovasc Surg, Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:1 总访问量:409 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)