Nuclear miR-320 Mediates Diabetes-Induced Cardiac Dysfunction by Activating Transcription of Fatty Acid Metabolic Genes to Cause Lipotoxicity in the Heart
Rationale: Diabetes mellitus is often associated with cardiovascular complications, which is the leading cause of morbidity and mortality among patients with diabetes mellitus, but little is known about the mechanism that connects diabetes mellitus to the development of cardiovascular dysfunction. Objective: We aim to elucidate the mechanism underlying hyperglycemia-induced cardiac dysfunction on a well-established db/db mouse model for diabetes mellitus and diabetic complications that lead to heart failure. Methods and Results: We first profiled the expression of microRNAs (miRNAs) by microarray and quantitative reverse transcription polymerase chain reaction on db/db mice and identified miR-320 as a key miRNA associated with the disease phenotype. We next established the clinical relevance of this finding by showing the upregulation of the same miRNA in the failing heart of patients with diabetes mellitus. We demonstrated the causal role of miR-320 in inducing diabetic cardiomyopathy, showing that miR-320 overexpression exacerbated while its inhibition improved the cardiac phenotype in db/db mice. Unexpectedly, we found that miR-320 acts as a small activating RNA in the nucleus at the level of transcription. By chromatin immunoprecipitation sequencing and chromatin immunoprecipitation quantitive polymerase chain reaction analysis of Ago2 (argonaute RISC catalytic component 2) and RNA polymerase II in response to miR-320 induction, we identified CD36 (fatty acid translocase) as a key target gene for this miRNA and showed that the induced expression of CD36 is responsible for increased fatty acid uptake, thereby causing lipotoxicity in the heart. Conclusions: These findings uncover a novel mechanism for diabetes mellitus-triggered cardiac dysfunction, provide an endogenous case for small activating RNA that has been demonstrated to date only with synthetic RNAs in transfected cells, and suggest a potential strategy to develop a miRNA-based therapy to treat diabetes mellitus-associated cardiovascular complications.
基金:
National Natural Science Foundation of China [81822002, 91439203, 91839302, 81630010, 31771264, 81790624, 31800973]; Fundamental Research Funds for the Central Universities [2019kfyXMBZ035]
语种:
外文
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类|1 区医学
小类|1 区心脏和心血管系统1 区血液学1 区外周血管病
最新[2025]版:
大类|1 区医学
小类|1 区心脏和心血管系统1 区血液学1 区外周血管病
JCR分区:
出版当年[2017]版:
Q1HEMATOLOGYQ1PERIPHERAL VASCULAR DISEASEQ1CARDIAC & CARDIOVASCULAR SYSTEMS
第一作者单位:[1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Div Cardiol,Dept Internal Med, 1095 Jiefang Ave, Wuhan 430030, Hubei, Peoples R China[2]Hubei Key Lab Genet & Mol Mech Cardiol Disorders, Wuhan, Hubei, Peoples R China
通讯作者:
通讯机构:[1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Div Cardiol,Dept Internal Med, 1095 Jiefang Ave, Wuhan 430030, Hubei, Peoples R China[2]Hubei Key Lab Genet & Mol Mech Cardiol Disorders, Wuhan, Hubei, Peoples R China
推荐引用方式(GB/T 7714):
Li Huaping,Fan Jiahui,Zhao Yanru,et al.Nuclear miR-320 Mediates Diabetes-Induced Cardiac Dysfunction by Activating Transcription of Fatty Acid Metabolic Genes to Cause Lipotoxicity in the Heart[J].CIRCULATION RESEARCH.2019,125(12):1106-1120.doi:10.1161/CIRCRESAHA.119.314898.
APA:
Li, Huaping,Fan, Jiahui,Zhao, Yanru,Zhang, Xiaorong,Dai, Beibei...&Wang, Dao Wen.(2019).Nuclear miR-320 Mediates Diabetes-Induced Cardiac Dysfunction by Activating Transcription of Fatty Acid Metabolic Genes to Cause Lipotoxicity in the Heart.CIRCULATION RESEARCH,125,(12)
MLA:
Li, Huaping,et al."Nuclear miR-320 Mediates Diabetes-Induced Cardiac Dysfunction by Activating Transcription of Fatty Acid Metabolic Genes to Cause Lipotoxicity in the Heart".CIRCULATION RESEARCH 125..12(2019):1106-1120