高级检索
当前位置: 首页 > 详情页

Biomimetic Protein Structural Transitions Regulate Activation and Inhibition of the Broad-Spectrum Bactericidal Activity of Cationic Nanoparticles

文献详情

资源类型:
Pubmed体系:
单位: [1]Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China [2]Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China [3]Taizhou Research Institute, Southern University of Science and Technology, Taizhou, Zhejiang, 318001, PR China
出处:
ISSN:

关键词: Biomimetic voltage-gated Protein conformational transition Antimicrobial functionality regulation Cationic nanoparticles Bacterial resistance Broad-spectrum bactericidal activity

摘要:
The development of cationic polymers as alternative materials to antibiotics necessitates addressing the challenge of balancing their antimicrobial activity and toxicity. Here we propose a precise switching strategy inspired by biomimetic voltage-gated ion channels, enabling controlled activation and inhibition of cationic antimicrobial functions through protein conformational transitions in diverse physiological environments. Following thermodynamic studies on the specific recognition between mannose end groups on polycations and concanavalin A (ConA), we synthesized a type of ConA-polycation nanoparticle. The nanoparticle was inhibited under neutral conditions, with cationic moieties shielded by ConA's β-sheet. This shielding suppresses their antimicrobial activity, thereby ensuring satisfactory biocompatibility. In mildly acidic environments, however, the transition of a portion of ConA to an α-helix conformation exposed cations at the particle periphery, activating antibacterial functionality. Compared to inhibited nanoparticles, those in the activated state exhibited a 32-256 times reduction in the minimum bactericidal concentration against bacteria and fungi (2-16 μg/mL). In a murine acute pulmonary infection model, intravenous administration of inhibited nanoparticles effectively reduced bacterial counts by 4-log within 12 h. The biomimetic design, regulating cationic antimicrobial functionality through the alteration in protein secondary structure, significantly retards bacterial resistance development, holding great promise for intelligent antimicrobial materials. STATEMENT OF SIGNIFICANCE: Cationic antimicrobial polymers exhibit advantages distinct from antibiotics due to their lower propensity for resistance development. However, the presence of cationic moieties also poses a threat to healthy cells and tissues, significantly constraining their potential for clinical applications. To address this challenge, we propose a biomimetic strategy that mimics voltage-gated ion channels to activate the antimicrobial functionality of cations selectively in bacterial environments through the conformational transitions of proteins between β-sheets and α-helices. In healthy tissues, the antimicrobial functionality is inhibited, ensuring satisfactory biocompatibility. Antimicrobial cationic materials capable of intelligent switching between an activated state and an inhibited state in response to environmental changes offer an effective strategy to prevent the development of resistance and mitigate potential side effects.Copyright © 2024. Published by Elsevier Ltd.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
第一作者:
第一作者单位: [1]Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)