高级检索
当前位置: 首页 > 详情页

Multi-scale window transformer for cervical cytopathology image recognition

文献详情

资源类型:
Pubmed体系:
单位: [1]Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China [2]School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China [3]Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
出处:
ISSN:

关键词: Cytopathology image recognition Multi-scale window transformer Convolutional feed-forward network Cervical cancer screening

摘要:
Cervical cancer is a major global health issue, particularly in developing countries where access to healthcare is limited. Early detection of pre-cancerous lesions is crucial for successful treatment and reducing mortality rates. However, traditional screening and diagnostic processes require cytopathology doctors to manually interpret a huge number of cells, which is time-consuming, costly, and prone to human experiences. In this paper, we propose a Multi-scale Window Transformer (MWT) for cervical cytopathology image recognition. We design multi-scale window multi-head self-attention (MW-MSA) to simultaneously integrate cell features of different scales. Small window self-attention is used to extract local cell detail features, and large window self-attention aims to integrate features from smaller-scale window attention to achieve window-to-window information interaction. Our design enables long-range feature integration but avoids whole image self-attention (SA) in ViT or twice local window SA in Swin Transformer. We find convolutional feed-forward networks (CFFN) are more efficient than original MLP-based FFN for representing cytopathology images. Our overall model adopts a pyramid architecture. We establish two multi-center cervical cell classification datasets of two-category 192,123 images and four-category 174,138 images. Extensive experiments demonstrate that our MWT outperforms state-of-the-art general classification networks and specialized classifiers for cytopathology images in the internal and external test sets. The results on large-scale datasets prove the effectiveness and generalization of our proposed model. Our work provides a reliable cytopathology image recognition method and helps establish computer-aided screening for cervical cancer. Our code is available at https://github.com/nmyz669/MWT, and our web service tool can be accessed at https://huggingface.co/spaces/nmyz/MWTdemo.© 2024 The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 生物学
小类 | 3 区 生化与分子生物学
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 生化与分子生物学
第一作者:
第一作者单位: [1]Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)