高级检索
当前位置: 首页 > 详情页

Robust whole slide image analysis for cervical cancer screening using deep learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

单位: [1]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Collaborat Innovat Ctr Biomed Engn, Wuhan, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Engn Sci, Britton Chance Ctr, Wuhan, Hubei, Peoples R China [3]Huazhong Univ Sci & Technol, Sch Engn Sci, MOE Key Lab Biomed Photon, Wuhan, Hubei, Peoples R China [4]Huazhong Univ Sci & Technol, Tongji Med Coll, Maternal & Child Hosp Hubei Prov, Dept Pathol, Wuhan, Hubei, Peoples R China [5]Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Obstet & Gynecol, Wuhan, Peoples R China [6]Huazhong Univ Sci & Technol, Tongji Med Coll, Hubei Canc Hosp, Dept Pathol, Wuhan, Hubei, Peoples R China [7]Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Clin Lab, Wuhan, Hubei, Peoples R China
出处:
ISSN:

摘要:
Computer-assisted diagnosis is key for scaling up cervical cancer screening, but current algorithms perform poorly on whole slide image analysis and generalization. Here, the authors present a WSI classification and top lesion cell recommendation system using deep learning, and achieve comparable results with cytologists. Computer-assisted diagnosis is key for scaling up cervical cancer screening. However, current recognition algorithms perform poorly on whole slide image (WSI) analysis, fail to generalize for diverse staining and imaging, and show sub-optimal clinical-level verification. Here, we develop a progressive lesion cell recognition method combining low- and high-resolution WSIs to recommend lesion cells and a recurrent neural network-based WSI classification model to evaluate the lesion degree of WSIs. We train and validate our WSI analysis system on 3,545 patient-wise WSIs with 79,911 annotations from multiple hospitals and several imaging instruments. On multi-center independent test sets of 1,170 patient-wise WSIs, we achieve 93.5% Specificity and 95.1% Sensitivity for classifying slides, comparing favourably to the average performance of three independent cytopathologists, and obtain 88.5% true positive rate for highlighting the top 10 lesion cells on 447 positive slides. After deployment, our system recognizes a one giga-pixel WSI in about 1.5 min.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
最新[2025]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2019]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Collaborat Innovat Ctr Biomed Engn, Wuhan, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Engn Sci, Britton Chance Ctr, Wuhan, Hubei, Peoples R China [3]Huazhong Univ Sci & Technol, Sch Engn Sci, MOE Key Lab Biomed Photon, Wuhan, Hubei, Peoples R China
通讯作者:
通讯机构: [1]Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Collaborat Innovat Ctr Biomed Engn, Wuhan, Hubei, Peoples R China [2]Huazhong Univ Sci & Technol, Sch Engn Sci, Britton Chance Ctr, Wuhan, Hubei, Peoples R China [3]Huazhong Univ Sci & Technol, Sch Engn Sci, MOE Key Lab Biomed Photon, Wuhan, Hubei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)