高级检索
当前位置: 首页 > 详情页

Deep learning enhanced the diagnostic merit of serum for cancers

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Ctr AI Biol, Dept Bioinformat & Syst Biol,Minist Educ,Key Lab M, Wuhan, Hubei, Peoples R China [2]Fujian Med Univ, Sch Publ Hlth, Dept Epidemiol & Hlth Stat, Fuzhou, Fujian, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Lab Med, Wuhan, Hubei, Peoples R China
出处:
ISSN:

关键词: Deep learning improved

摘要:
Protein glycosylation is associated with the pathogenesis of various cancers. The utilization of certain glycans in cancer diagnosis models holds promise, yet their accuracy is not always guaranteed. Here, we investigated the utility of deep learning techniques, specifically random forests combined with transfer learning, in enhancing serum glycome's discriminative power for cancer diagnosis (including ovarian cancer, non-small cell lung cancer, gastric cancer, and esophageal cancer). We started with ovarian cancer and demonstrated that transfer learning can achieve superior performance in data-disadvantaged cohorts (AUROC >0.9), outperforming the approach of PLS-DA. We identified a serum glycan-biomarker panel including 18 serum N-glycans and 4 glycan derived traits, most of which were featured with sialylation. Furthermore, we validated advantage of the transfer learning scheme across other cancer groups. These findings highlighted the superiority of transfer learning in improving the performance of glycans-based cancer diagnosis model and identifying cancer biomarkers, providing a new high-fidelity cancer diagnosis venue.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
最新[2025]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Ctr AI Biol, Dept Bioinformat & Syst Biol,Minist Educ,Key Lab M, Wuhan, Hubei, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)