高级检索
当前位置: 首页 > 详情页

The increasing strength of higher-order interactions may homogenize the distribution of infections in Turing patterns

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]North Univ China, Coll Math, Taiyuan 030051, Shanxi, Peoples R China [2]Shanxi Med Univ, Shanxi Bethune Hosp, Shanxi Acad Med Sci, Tongji Shanxi Hosp,Hosp 3, Taiyuan 030032, Peoples R China [3]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Wuhan 430030, Peoples R China
出处:
ISSN:

关键词: Epidemics Turing patterns Reaction-diffusion Simplicial complexes

摘要:
The spatial pattern of epidemic is one key metric describing epidemiological spread features, beneficial to formulation of the intervention measures. Networked reaction-diffusion (RD) systems have become popular to mathematically portray such patterns due to discrete distribution of human habitat. However, most of the current research focused on diffusion along pairwise interactions. Effect of diffusion along higher-order interactions is still understood poorly. To this end, in the paper, based on one classic SIR epidemic RD model, we study its Turing instability in simplicial complexes and analyze the impact of the simplex strength on Turing patterns. It is found by theoretical analysis and simulation that the distribution of infections in patterns tends to become homogeneity with the increase of the simplex strength, i.e., infection density of most nodes concentrates near the steady state. Obviously, for a newly emerging epidemic, such homogeneous scenario is unfavorable to epidemic control. Because it may lead to the decentralized allocation of limited resources, which is not enough to contain epidemic. In contrast, heterogeneous scenario that nodes with low and high infection density prominently distribute in two sides of steady state allows to put all limited resources into the targeted treatment of nodes with high infection density. Our findings link epidemic control with higher-order interactions and may provide a new insight into intervening epidemic from higher-order networks.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 数学
小类 | 1 区 数学跨学科应用 1 区 物理:数学物理 1 区 物理:综合
最新[2025]版:
大类 | 1 区 数学
小类 | 1 区 数学跨学科应用 1 区 物理:数学物理 2 区 物理:综合
JCR分区:
出版当年[2022]版:
Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q1 PHYSICS, MATHEMATICAL Q1 PHYSICS, MULTIDISCIPLINARY
最新[2023]版:
Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q1 PHYSICS, MATHEMATICAL Q1 PHYSICS, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者单位: [1]North Univ China, Coll Math, Taiyuan 030051, Shanxi, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)