高级检索
当前位置: 首页 > 详情页

Bayesian Algorithms for Joint Estimation of Brain Activity and Noise in Electromagnetic Imaging

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

单位: [1]Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China [2]Huazhong Univ Sci & Technol,Tongji Hosp,Tongji Med Coll,Dept Neurol,Wuhan 430079,Hubei,Peoples R China [3]Tech Univ Berlin, Uncertainty Inverse Modeling & Machine Learning Gr, D-10587 Berlin, Germany [4]Tech Univ Berlin, Inst Software Engn & Theoret Comp Sci, Fac Elect Engn & Comp Sci 4, Machine Learning Grp, D-10587 Berlin, Germany [5]Wuhan Univ, Sch Comp Sci, Wuhan 430079, Peoples R China [6]Univ Colorado, Dept Radiol, Anschutz Med Campus, Aurora, CO 80045 USA [7]Tech Univ Berlin, Uncertainty Inverse Modeling & MachineLearning Grp, D-10623 Berlin, Germany [8]Phys Tech Bundesanstalt Braunschweig & Berlin, D-10587 Berlin, Germany [9]Charite Univ Med Berlin, D-10117 Berlin, Germany [10]Tokyo Med & Dent Univ, Dept Adv Technol Med, Tokyo 1138519, Japan [11]Signal Anal Inc, Hachioji, Tokyo 1138519, Japan [12]Alto Neurosci Inc, Los Altos, CA 94022 USA [13]Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
出处:
ISSN:

关键词: Sensors Brain modeling Estimation Interference Bayes methods Neuroimaging Image sensors Electromagnetic brain imaging noise estimation Bayesian inference augmented leadfield inverse problem MEG EEG

摘要:
Simultaneously estimating brain source activity and noise has long been a challenging task in electromagnetic brain imaging using magneto- and electroencephalography. The problem is challenging not only in terms of solving the NP-hard inverse problem of reconstructing unknown brain activity across thousands of voxels from a limited number of sensors, but also for the need to simultaneously estimate the noise and interference. We present a generative model with an augmented leadfield matrix to simultaneously estimate brain source activity and sensor noise statistics in electromagnetic brain imaging (EBI). We then derive three Bayesian inference algorithms for this generative model (expectation-maximization (EBI-EM), convex bounding (EBI-Convex) and fixed-point (EBI-Mackay)) to simultaneously estimate the hyperparameters of the prior distribution for brain source activity and sensor noise. A comprehensive performance evaluation for these three algorithms is performed. Simulations consistently show that the performance of EBI-Convex and EBI-Mackay updates is superior to that of EBI-EM. In contrast to the EBI-EM algorithm, both EBI-Convex and EBI-Mackay updates are quite robust to initialization, and are computationally efficient with fast convergence in the presence of both Gaussian and real brain noise. We also demonstrate that EBI-Convex and EBI-Mackay update algorithms can reconstruct complex brain activity with only a few trials of sensor data, and for resting-state data, achieving significant improvement in source reconstruction and noise learning for electromagnetic brain imaging.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 核医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 工程:生物医学 1 区 计算机:跨学科应用
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan 430079, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:432 今日访问量:1 总访问量:414 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)