高级检索
当前位置: 首页 > 详情页

Phylogenetic analyses of antimicrobial resistant Corynebacterium striatum strains isolated from a nosocomial outbreak in a tertiary hospital in China

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China [2]Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
出处:
ISSN:

关键词: Corynebacterium striatum Antibiotic resistance Biofilms 16S rRNA Phylogenetic analysis

摘要:
Corynebacterium striatum is an emerging, multidrug-resistant pathogen that frequently causes nosocomial infections worldwide. This study aimed to investigate phylogenetic relationship and presence of genes responsible for antimicrobial resistance among C. striatum strains associated with an outbreak at the Shanxi Bethune Hospital, China, in 2021. Fecal samples were collected from 65 patients with C. striatum infection at Shanxi Bethune Hospital between February 12, 2021 and April 12, 2021. C. striatum isolates were identified by 16S rRNA and rpoB gene sequencing. E-test strips were used to examine the antimicrobial susceptibility of the isolates. Whole-genome sequencing and bioinformatics analysis were employed to assess the genomic features and identify antimicrobial resistance genes of the isolates. Crystal violet staining was conducted to determine the ability of biofilm formation of each isolate. A total of 64 C. striatum isolates were identified and categorized into 4 clades based on single nucleotide polymorphisms. All isolates were resistant to penicillin, meropenem, ceftriaxone, and ciprofloxacin but susceptible to vancomycin and linezolid. Most isolates were also resistant to tetracycline, clindamycin, and erythromycin, with susceptibility rates of 10.77, 4.62, and 7.69%, respectively. Genomic analysis revealed 14 antimicrobial resistance genes in the isolates, including tetW, ermX, and sul1. Crystal violet staining showed that all isolates formed biofilms on the abiotic surface. Four clades of multidrug-resistant C. striatum spread in our hospitals possibly due to the acquisition of antimicrobial resistance genes.© 2023. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 生物学
小类 | 4 区 微生物学
最新[2025]版:
大类 | 3 区 生物学
小类 | 4 区 微生物学
JCR分区:
出版当年[2021]版:
Q4 MICROBIOLOGY
最新[2023]版:
Q4 MICROBIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China [2]Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
通讯作者:
通讯机构: [1]Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China [2]Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:2 总访问量:410 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)