高级检索
当前位置: 首页 > 详情页

Artificial intelligence-based ultrasound elastography for disease evaluation - a narrative review

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, Wuhan, Peoples R China [2]First Hosp Changsha, Dept Ultrasonog, Changsha, Peoples R China [3]Dalian Municipal Cent Hosp, Hlth Med Dept, Dalian, Peoples R China [4]Minda Hosp Hubei Minzu Univ, Dept Med Ultrasound, Enshi, Peoples R China [5]Anhui Med Univ, Affiliated Hosp 1, Dept Med Ultrasound, Hefei, Peoples R China [6]Hirslanden Clin, Dept Internal Med, Bern, Switzerland
出处:
ISSN:

关键词: ultrasound elastography artificial intelligence machine learning deep learning radiomics

摘要:
Ultrasound elastography (USE) provides complementary information of tissue stiffness and elasticity to conventional ultrasound imaging. It is noninvasive and free of radiation, and has become a valuable tool to improve diagnostic performance with conventional ultrasound imaging. However, the diagnostic accuracy will be reduced due to high operator-dependence and intra- and inter-observer variability in visual observations of radiologists. Artificial intelligence (AI) has great potential to perform automatic medical image analysis tasks to provide a more objective, accurate and intelligent diagnosis. More recently, the enhanced diagnostic performance of AI applied to USE have been demonstrated for various disease evaluations. This review provides an overview of the basic concepts of USE and AI techniques for clinical radiologists and then introduces the applications of AI in USE imaging that focus on the following anatomical sites: liver, breast, thyroid and other organs for lesion detection and segmentation, machine learning (ML) - assisted classification and prognosis prediction. In addition, the existing challenges and future trends of AI in USE are also discussed.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2021]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, Wuhan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)