高级检索
当前位置: 首页 > 详情页

A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and targeted enhanced photothermal therapy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]Department of Gynecological Oncology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430000,China [2]National Clinical Research Center for Obstetrics and Gynecology,Cancer Biology Research Center (Key Laboratory of the Ministry of Education),Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430000,China [3]Department of Gynecology, West China Second University Hospital, Chengdu 610000, China [4]Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China [5]Hubei University of Medicine, Shiyan 442000, China [6]School of Medicine, Jianghan University, Wuhan 430000, China [7]Department of Thyroid and Breast Surgery,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China
出处:
ISSN:

关键词: Molecular imaging TMVP1 Sentinel lymph node Photothermal therapy

摘要:
TMVP1 is a novel tumor targeting polypeptide screened by our laboratory with a core sequence of five amino acids LARGR. It specially binds to vascular endothelial growth factor receptor-3 (VEGFR-3), which is mainly expressed on neo-lymphatic vessels in sentinel lymph node (SLN) with tumor metastasis in adults. Here, we prepared a targeted nanoprobe using TMVP1-modified nanomaterials for tumor metastasis SLN imaging.In this study, TMVP1-modified polymer nanomaterials were loaded with the near-infrared (NIR) fluorescent dye, indocyanine green (ICG), to prepare a molecular imaging TMVP1-ICG nanoparticles (NPs) to identify tumor metastasis in SLN at molecular level. TMVP1-ICG-NPs were successfully prepared using the nano-precipitation method. The particle diameter, morphology, drug encapsulation efficiency, UV absorption spectrum, cytotoxicity, safety, and pharmacokinetic properties were determined. The TMVP1-ICG-NPs had a diameter of approximately 130 nm and an ICG loading rate of 70%. In vitro cell experiments and in vivo mouse experiments confirmed that TMVP1-ICG-NPs have good targeting ability to tumors in situ and to SLN with tumor metastasis by binding to VEGFR-3. Effective photothermal therapy (PTT) with TMVP1-ICG-NPs was confirmed in vitro and in vivo. As expected, TMVP1-ICG-NPs improved ICG blood stability, targeted tumor metastasis to SLN, and enhanced PTT/photodynamic (PDT) therapy, without obvious cytotoxicity, making it a promising theranostic nanomedicine.TMVP1-ICG-NPs identified SLN with tumor metastasis and were used to perform imaging-guided PTT, which makes it a promising strategy for providing real-time NIR fluorescence imaging and intraoperative PTT for patients with SLN metastasis.© 2023. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
JCR分区:
出版当年[2021]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q2 NANOSCIENCE & NANOTECHNOLOGY
最新[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]Department of Gynecological Oncology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430000,China [2]National Clinical Research Center for Obstetrics and Gynecology,Cancer Biology Research Center (Key Laboratory of the Ministry of Education),Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430000,China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Gynecological Oncology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430000,China [2]National Clinical Research Center for Obstetrics and Gynecology,Cancer Biology Research Center (Key Laboratory of the Ministry of Education),Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430000,China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:426 今日访问量:0 总访问量:408 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)