高级检索
当前位置: 首页 > 详情页

Dietary selenomethionine attenuates obesity by enhancing beiging process in white adipose tissue

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

单位: [1]The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China. [2]The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Selenium and Human Health Institute, Enshi, Hubei, China [3]Hubei Selenium and Human Health Institute, Enshi, Hubei, China. [4]Branch of National Clinical Research Center for Metabolic Diseases, Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
出处:
ISSN:

关键词: Selenium Dietary selenomethionine High-fat diet Beige adipocyte Obesity

摘要:
Imbalanced nutrient intake causes abnormal energy metabolism, which results in obesity. There is feasible evidence that selenium-rich (Se-rich) foods may alleviate obesity and enhance general public health, but the underlying mechanisms remain elusive. Herein we examined the effect of Se supplementation on white adipose tissue beiging process. The mice were fed with a normal diet or a Se-deficient high-fat diet group (DHFD) until there were significant differences in body weight, intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT). Then, the diet of DHFD group was changed to a high-fat diet (HFD) containing specified amounts of selenomethionine (SeMet) (0, 150, 300, and 600 μg/kg) and continued to feed for 14 weeks. Notably, 150 μg/kg SeMet supplement was highly protected from DHFD-induced obesity, insulin resistance, and lipid deposits in liver and kidney, and featured by the enhanced beiging process in white adipose tissue and increased energy expenditure. Moreover, upon cold challenge, 150 μg/kg SeMet supplement enhanced cold tolerance in mice for inducing adipose beiging to promote energy expenditure, evidenced by the increased expression of uncoupling protein-1 (UCP1) in adipocytes. Similarly, SeMet (10 μM) promoted the differentiation of beige adipocytes from the stromal vascular fraction. Collectively, our data support that optimal supplementation of SeMet could enhance the beiging process to attenuate HFD-induced obesity, thus providing new insights into the relationship between dietary SeMet and type 2 diabetes.Copyright © 2022. Published by Elsevier Inc.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 1 区 营养学 2 区 生化与分子生物学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 生化与分子生物学 2 区 营养学
JCR分区:
出版当年[2021]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 NUTRITION & DIETETICS
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 NUTRITION & DIETETICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者单位: [1]The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:428 今日访问量:0 总访问量:412 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有:重庆聚合科技有限公司 渝ICP备12007440号-3 地址:重庆市两江新区泰山大道西段8号坤恩国际商务中心16层(401121)